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1. Introduction 

A global concern is rising about the use of phytosanitary products for crop protection 

against pests and pathogens. French arable farming systems are particularly dependent on 

this practice with two third of the total pesticide value used on cereals and industrial crops 

(Butault et al., 2011). Recurrent pesticide applications have often been associated with 

human health hazard and environmental degradation (Stoate et al., 2001). Reduction of 

pesticide use in arable farming may be achieved through alternative farming practices 

favoring natural regulation of bioagressors (Rusch et al., 2010). 

Historically, the control of crop bioagressors, such as pest and pathogens, relies mainly 

on the management of the plot. However, drivers of pests and pathogens epidemics in 

cultivated areas occur at different spatial scales (Clough et al., 2006; Rusch et al., 2010; 

Schellhorn et al., 2008). As bioagressors dispersal is not limited by the plot’s borders,  

integrating the impact of the landscape in the analysis would allow to study and 

potentially use the effect of neighboring crop and non-crop elements (Bianchi et al., 2006; 

Veres et al., 2013). The design of pests and pathogens integrated management strategies 

has vastly been influenced by this approach (Philips et al., 2014; Tscharntke et al., 2005).  

Landscape composition can be described in terms of semi-natural areas, host crops, and 

patchiness. The influence of these elements was demonstrated on the abundance of pests 

(Bianchi et al., 2006; Chaplin-Kramer et al., 2011; Rusch et al., 2016) and pathogens in 

crops (Margosian et al., 2009; Papaïx et al., 2015). These elements may be known to 

either counteract or facilitate bioagressors dispersal (Karp et al., 2018). For instance, field 

hedgerows may promote pest’s regulation via natural enemies, while large host crop 

surface may provide a suitable environment for pathogen spread. As a matter of fact, these 

elements showed contrasted effects between organisms, farming systems, and cropping 

seasons (Karp et al., 2018; Menalled et al., 2003; Perez-Alvarez et al., 2018).  

Agricultural landscapes are highly dynamics, the plot being a highly disrupted 

environment, compared to natural areas that are more stable throughout time (Veres et 

al., 2013). Landscape composition drivers of bioagressors abundance are then assumed 

to evolve between cropping seasons (Esker and Nutter, 2003; Gardiner et al., 2009; 

Menalled et al., 2003; Thies et al., 2008). Coupled with weather variation, it becomes 

complex to dissociate the drivers of bioagressors abundance variation in time and space. 

Temporal variation of bioagressor abundance in relation to landscape composition 

received little attention in literature (Chaplin-Kramer et al., 2013). Short-term studies 

may actually not reflect the long-term effect of the surrounding landscape on the 

bioagressors populations (Karp et al., 2018).  
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For specific cases where the amount of data in space and time is large enough (Lacasella 

et al., 2017), the effects of host crop dynamics and the effect of bioagressors abundance 

from a given year on the next one were not explicitly taken into account. Studies often 

focused on single pest-parasitoid interactions, and sometimes on a bioagressors cohort of 

a particular crop, as cruciferous species (Perez-Alvarez et al., 2018) or wheat (Yang et 

al., 2019).  

In this study, we assess the consistency of the impacts of semi-natural areas and host crop 

fields in the landscape on pest and pathogens in cultivated fields. Our approach relies on 

the analysis of systematic French epidemiosurveillance data spanning 9 years of 

observations (2009-2017) over two third of the metropolitan French territory. In total, 

hundreds of observations for each of 30 majors bioagressors of arable crops (wheat, 

barley, maize, potato, rapeseed and sugar beet) were jointly studied with landscape 

composition as described by official CAP data and woody vegetation maps. Beyond the 

simple correlation between landscape composition and bioagressors abundance, we 

control for the presence of the host crop the former years in the plot and for bioagressors 

former prevalence.  
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2. Materials and methods 

2.1. Pests and pathogens data 

The French governmental arable crop epidemiological services require since 2008 that 

actors involved in the monitoring record and centralize their observations of pests and 

pathogens. A subsystem called Vigicultures (Sine et al., 2010), conceived by one of the 

main French technical institutes (ARVALIS-Institut du végétal) has since been used in 

most French administrative regions (17/22) to centralize the results, covering 

approximatively two third of the metropolitan territory (Fig. 1). A similar information 

system, but for non-treated sugar-beet crop, called VIGIBET (ITB – Sugar Beet Research 

Institute) was used to complete data. These datasets were covering the 2009-2017 period. 

A different set of plots is monitored each year, georeferenced and visited approximatively 

once a week during the cropping season to assess the state of pest and pathogen 

epidemics. A diversity of organizations contributes to the monitoring following 

standardized protocols. Several type of observations can be made on each bioagressor, 

here we quantify the abundance of a bioagressor using only the metric with the highest 

number of observations (Table 1ab). In total, data for 13 pests of winter wheat, corn and 

oilseed rape (Table 1a) and 17 pathogens of winter wheat, winter barley, oilseed rape, 

sugar beet and potatoes (Table 1b) were analyzed. 

 

 

 

Figure 1. Spatial distribution of agricultural plots monitored 

Sugar beet Winter wheat Oilseed rape 

Maize Winter Barley Potatoes 
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Table 1a. Pest data characteristics  

Crop species Bioagressor group1 Observation period2 N (plot  year)  Observation metric 

Winter Wheat Cecidomyiidae spp. March-June 1159 # 3 observed in yellow bowl 

Deroceras, Arion, Limax spp. October-May 2869 % of seedlings with damages 

Rhopalosiphum padi October-May 2509 % of plants with insect present 

Sitobion avenae 
 

March-August 2226 % of plants with insect present 

Corn 
 

Ostrinia nubilalis 
 

April-October 1446 # adults in pheromone traps 

Oilseed rape Brevicoryne brassicae January-August 4043 # colony per m2 

Ceuthorhynchus napi January-May 4518 # captured in traps 

Ceutorhynchus assimilis February-August 4087 # per plants 

Ceutorhynchus picitarsis September-January 4111 # captured in traps 

Meligethes aeneus January-June 4294 % of plants with insect present 

Myzus persicae August-December 3476 % of plants with insect present 

Phyllotreta nemorum September-December 2915 # captured in vegetation traps 

Psylliodes chysocephala August-December 3863 # captured in ground traps 
1Can be species, family or gender or of the bioagressor of interest 
2Observations performed by Vigicultures  experts during the 2009-2017 period 
3# : number counted 

 

 

 

 

 

Table 1b. Pathogens data characteristics  

Crop species Bioagressor group1 Observation period2 N (plot  year) Observation metric 

Winter Wheat Blumeria graminis February-July 3666 Severity scale 1:103 

Fusarium Graminearum February-July 1945 % of the base stem infected 

Gaeumannomyces graminis March-July 1114 Severity scale 1:100 

Helminthosporium spp. February-July 2459 Severity scale 1:103 

Oculimacula spp. February-July 2734 Severity scale 1:100 

Puccinia striiformis January-July 3158 Severity scale 1:1003 

Puccinia triticina January-July 3945 Severity scale 1:103 

Septoria tritici 
 

February-July 4350 Severity scale 1:103 

Winter Barley 
 

Helminthosporium spp. February-July 1585 Severity scale 1:103 

Rhynchosporium secalis 
 

February-July 1609 Severity scale 1:103  

Oilseed rape 
 

Leptosphaeria maculans February-August 3234 % of plants with stem necrosis 

Sclerotinia sclerotiorum 
 

March-June 1515 % of flower affected 

Sugar Beet  

 

Cercospora beticola June-October 1078 % of infected leaves 

Erysiphe betae June-October 1069 % of infected leaves 

Ramularia betae June-October 1070 % of infected leaves 

Uromyces betae 
 

June-October 1069 % of infected leaves 

Potatoes  Phytophthora infestans April-September 940 Severity scale 1:10 
1Can be species, family or gender or of the bioagressor of interest 
2Observations performed by Vigicultures  experts during the 2009-2017 period 
3On the third leaf (F3)  
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2.2. Landscape composition data 

Landscape composition, in terms of agricultural land and semi-natural areas, was 

extracted from two geographic information systems. The French Land Parcel 

Identification System (RPG or “Registre Parcellaire Graphique”) and the BD TOPO 

from the IGN. 

The RPG provides detailed information on the cropland cover over the French territory. 

This system is the French implementation of the registration needed to manage 

agricultural subsidies in the framework of the European Common Agricultural Policy 

(CAP). The data are generated by farmers, who describe on satellite photographs of the 

BD Ortho, the geometry (vector format) and cover of their fields. Each plot is 

anonymously registered under a code name specific to the farm, with information about 

the crop type, surface and geometry (Cantelaube, 2015). From 2006 to 2014 the 

geometrical description of the crops was by islet, in 80% of the cases with only one type 

of crop but in 20% of the islets a group of contiguous plots with different crops. In 

addition, the information on the crops was by crop types (28 crop types for 329 crops 

registered) of differing precisions: winter wheat, oilseed rape, winter barley, corn 

(including both silage and grain corn), other industrial crops (mainly beet) and flowering 

vegetables (mostly potatoes). From 2015 to 2017, both limitations have been lifted and 

the exact crop is known at the field level.   

In this study, the semi-natural elements considered were woods, grasslands and 

hedgerows. While the RPG provides information about arable crops and grasslands 

(temporary and permanent are not distinguished), the BD TOPO (version 2.1) provides 

information about the geometry of woody areas (vector format). The BD TOPO is part 

of the Large-Scale Reference (RGE or “Referentiel à grande echelle”) from the National 

Institute of Geographic and Forest Information (IGN). In this database, we group as 

“wood” the forests of broad-leaved, conifer, mixed species, with closed (> 40% ground 

cover) or open (between 10 and 40% ground cover) canopy. We also extract the 

hedgerows, that is any field hedge of vegetation composed of wood or shrub species with 

a width lesser than 25m. Orchard, vineyard, poplar grove and moors were not included in 

the analysis. As those woody formations are less subject to change, we only used the year 

2017 version of the BD TOPO.  

 

2.3. Variables calculations 

The response variable, i.e. the bioagressor abundance, was calculated from the 

Vigicultures observation metrics for each bioagressor. Raw data consisted in weekly 

measurements, per plot per bioagressors, with missing data. For each bioagressors metric, 

we calculated the average abundance for each plot*year combination. Then, the 

calculated the global median on these averages. The latter median was used as a threshold. 

For each plot-year and organism, we calculated how much time weekly observations were 
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exceeded this threshold. This number of “positive observations” was accounted for the 

number of total observations during the year.  Hence, the rate of positive observations for 

a given plot, a given year was our response variable.  

As explanatory variables, we used the surface of semi-natural elements and of the host 

crop type (Table 2) around each agricultural plot in buffers of 200m, 1km, 5km, and 

10km. For instance, the variable grassland surface at 1km scale represented the area of 

grassland in m2 found in a 1km radius around the plot of interest. The buffer sizes were 

chosen as typical sizes of possible management units. The first buffer size corresponds 

roughly to including the adjacent plot: from the RPG we calculated the average and 

median size of french arable crop plots in 2014 to be 4.6 ha and 2.76 ha corresponding to 

a border size of square plots of respectively 214 and 166m. The 1km radius lousily 

corresponds to including a few fields around the observation, possibly managed by one 

farmer. The 5 km radius roughly corresponds to the square root of the average size of the   

territory of a French municipality. The 10km radius is on the order of magnitude of 

including neighboring municipalities, the maximum we envision as a bottom-up self-

organized management unit.  

 

Table 2. Features of the explanatory variables studied in the bioagressor models1 

Effect type Description Scale  Unit 

Semi natural 

areas 

Woods surface 200m, 1km, 5m and 

10km  

m2 

Hedgerows surface 200m, 1km, 5m and 

10km  

m2 

Grasslands surface (y) ** 

 

200m, 1km, 5m and 

10km  

m2 

Cultivated 

area  
 

Host crop surface (y-1) 
** 200m, 1km, 5m and 

10km  

m2 

Host crop surface (y-1) 
** 200m, 1km, 5m and 

10km  

m2 

Crop rotation Time since last cultivated grassland on plot _ year 

Time since last cultivated host crop on plot 

 

_ year 

Former 

prevalence   

Departmental bioagressor abundance (y-

1)**  

_ % positive observation3
 

Landscape 

former 

prevalence  

Departmental bioagressor abundance  

Crop surface (y-1)**  

200m, 1km, 5m and 

10km 

% positive observation3.m2 

1 there is only one crop of interest per bioagressor model 
2 y is the harvesting year for the crop under observation 
3 the rate of observations the former harvesting year in the department 

 

The effect of crop rotation on the plot was considered here as the time elapsed (in years) 

since the last time the host crop type was cultivated on the islets including the point of 

observation. As we had only 2 years of RPG data previous to the first observation, this 

variable was simplified to 1, 2, 3 years or more. Similarly, we considered the time elapsed 

since the last grassland at the point of observation.  
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We also accounted for the abundance of the bioagressors (as described above) the 

previous year, aggregated at the departmental level. The plots were not monitored every 

year, as a result, a higher level of aggregation, the departmental one, was considered to 

represent the bioagressors prevalence of the former year. The interaction between this 

value and the host crop surface of the of the previous year in the landscape was added as 

well to the candidate variables. All explanatory variables were log transformed.  

Bioagressor models were all set with the quantitative variables of Table 2, plus a group 

of structural variables accounting for the small-scale regional farming system first, and 

second the interactions year  climatic zone. We did not include specific weather-related 

factors in this analysis. However, we accounted for potential year  climatic zone 

differences. These climatic zones are defined here as broad entities of pedoclimatic 

context for the production of wheat and are an adaptation of the climatic entities defined 

by Lorgeou et al. 2012. These two factors were added in the model as fixed effect 

controlling for potential heterogeneity but were not further investigated.  

 

2.4. Statistical analysis 

Bioagressor abundance was represented in the final model by the ratio ij, the number of 

times the value exceeded the median threshold a given year in a given plot over the total 

number of observations in this plot: 

𝑖𝑗  =
𝑛𝑜𝑏𝑠.𝑎𝑏𝑜𝑣𝑒 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝑛𝑜𝑏𝑠.  𝑡𝑜𝑡𝑎𝑙
 

This ratio was analyzed by fitting a generalized linear model (GLM) via penalized 

maximum likelihood (LASSO) using a binomial model (Guisan and Zimmermann, 2000).  

for the number of observations above the threshold among the total number of 

observations per plot. Among the multiple potential explanatory variable, the LASSO 

method provided by the glmnet R package (Friedman et al., 2008) automatize the 

selection of the most relevant variables, based on cross-validations, for each of the 

bioagressor models. Partial correlation coefficients were calculated in order to assess 

explanatory power of the variables in each model (Barbu et al., 2016).  
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3. Results 

3.1. Data management 

Present results are based on the work of the team of C. Barbu at the National Institute 

of Agricultural Research since 2014 (Barbu et al., 2016). The system was originally 

performing analysis for 13 pests and 13 pathogens. Bioagressors abundance data were 

automatically retrieved from Vigicultures website by emulating clicks in a browser. 

Four sugar beet pathogens were added to the existing database thanks to the Technical 

Institute for Beet that provided Vigicultures data for this crop. These data were 

manually imported because of structure and format differences with the original 

Vigicultures data.  

The time period the system was analyzing increased from 2009-2014 to 2009-2017 with 

the importation of agricultural plot data for the 2015-2017 period.  This data required a 

specific importation, because of the changes mentioned above (cf. 2.2.) Such data are 

more accurate to describe the landscape composition in term of crops present and their 

surface. Moreover, Vigicultures data were the most abundant in the year 2017, followed 

by 2016 and 2015. Thus, the addition of the 2015-2017 agricultural plot data allowed to 

increase the number of plots per year per bioagressors combinations from 44785 to 78056 

data points. It is important to note that the main trends observed with the reduced dataset 

were unchanged with this update.  

Existing functions for the calculation of bioagressors abundance metrics and landscape 

metrics were not altered. New data were always specifically formatted and adapted to 

those functions. However, new variables were calculated and added in the system: the 

departmental bioagressors prevalence of the previous cropping season (Table 2) and its 

product with the surface of host crop of the previous year. Functions responsible for the 

statistical analysis and outputs were adapted to account for these variables.  

A set of meteorological variables were also formatted to be processed by the statistical 

model. Meteorological data were drawn from the objective analysis module SAFRAN 

(Lemoigne, 2002) of the National Centre of Meteorological Research. Precipitation, 

evapotranspiration, minimal and maximal temperatures processed data were available at 

the monthly and departmental scale. However, from the first results, this resolution was 

judged too coarse. After importing the raw data, daily weather parameters were calculated 

at 8km resolution. They were then averaged into monthly periods. Each of the 12 months 

preceding the last bioagressors observations during a given cropping season, for each 

weather parameters represented a potential explanatory variable. However, lack of time 

prevented the integration of these variables in the statistical model, hence not presented 

in this report.  
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3.2. Spatial effect of landscape composition 

All bioagressors models were set with the same group of variables: wood, hedgerow, 

grassland and host crop area in the landscape (current and previous year) at a scale of 

200, 1000, 5000, 10000 m, around a given plot a given year. The time since the last 

grassland in the plot, and the time since the host crop was cultivated on the plot, were 

also included. 

Contrasted responses to landscape components were observed between pests and 

pathogens but also among their group. From the modelling process with automated 

variable selection, we characterized the detrimental or protecting effect of the main 

components of an agricultural landscape. The number bioagressors affected by a 

landscape component (Fig. 2) illustrates the consistency of the effect on a group of 

bioagressors.  

 

Surface of grassland, hedgerows and woodlands in the landscape showed mixed effects 

between pests and pathogens but also among their group. Between the two model, with 

and without accounting for the bioagressors prevalence of the former year, the number of 

bioagressors affected by the area of semi-natural components changes (Fig. 2a, b). A 

higher number of bioagressors were unaffected in the model accounting for the 

prevalence of the former year (Fig. 2b), indicating a weaker influence of the area of semi-

natural elements. The number of pathogens negatively affected by hedgerow surface was 
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Figure 2a. Summary of the directions of landscape components effects on pest (above) and pathogens 

(below) abundance. Bars indicated the number of bioagressors affected positively by a variable (in red), 

unaffected (in white) or affected negatively (in green). Number above coloured bar indicates the median 

of the spatial scale associated with a landscape component. Significant levels of 0.1, 0.05, 0.01, and 

0.001are indicated by  . ,*, **, and *** respectively 
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no more significantly higher than the number of pathogens positively affected by 

hedgerow surface. Woodlands areas, while not significantly detrimental in both models 

had a mostly positive effect on pests, but not on pathogens. Grasslands showed a negative 

correlation with pest and pathogens abundance in both models, however, the number of 

bioagressors negatively impacted was not significantly higher than the number of 

bioagressors positively impacted. 

Relationship with the host crop surface of the same year as the observation was performed 

were opposed between pests and pathogens (Fig 2a, b). The number of bioagressors 

negatively affected was never significantly higher the number of bioagressors positively 

affected. A poor significance was observed for the model accounting for the prevalence 

of the former year in the pest group (Fig. 2b, P < 0.1). More pests were negatively affected 

by the host crop surface, 7 against 2 (Fig. 2a) for the model without former prevalence, 6 

against 2 (Fig. 2b), in the model with former prevalence. As opposed, more pathogens 

were positively affected, 6 against 2 (Fig. 2a) and 7 against 3 (Fig. 2b). This effect was 

relatively consistent among the groups and between the two models (Sup. material I,II). 

The absence of strong correlation between semi-natural components, extent of the host 

crop surface during the year of observation, and the abundance of bioagressors advised 

the consideration of the temporal dynamics of the landscape for the analysis.  
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Figure 2b. Summary of the directions of landscape components and inoculum effects on pest (above) and pathogens (below) abundance. 

Bars indicated the number of bioagressors affected positively by a variable (in red), unaffected (in white) or affected negatively (in green). 

Number above coloured bar indicates the median of the spatial scale associated with a landscape component. Significant levels of 0.1, 0.05, 

0.01, and 0.001are indicated by  . ,*, **, and *** respectively.  
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3.3. Spatiotemporal effect of host crop surface 

Host crop surface of the previous year was the only component positively correlated with 

both pests and pathogens abundance. For both groups (model without prevalence), a 

significantly higher number of organisms showing a positive relationship was observed 

(Figure 2a, P. < 0.05). Wheat and sugar beet pathogens were generally unaffected (Sup. 

material I.B). Among all organisms, partial correlations ranged from 0 up to 13% for 

Sclerotinia sclerotiorum (Sup. material I.B). Consistent correlations highlighted that 

large host crop surface is likely to provide more favorable conditions for the organisms 

to develop during the following cropping season. For the pests, organisms that were 

affected as well by the surface of the host crop the current and previous year showed 

consistently a negative correlation with the former and a positive correlation with the 

latter. This trend concerns mainly the weevils of the Ceuthorhynchus family (Sup. 

material I.A). While pathogens showed a tendency to be positively correlated with the 

host crop surface of the current year, there was no noticeable relationship for a particular 

crop.  

It was expected that the surface of the host crop between two years can be highly 

correlated. The strong effect of the host crop surface of the previous year at the landscape 

could mask the effect of crop rotation on the plot. The latter was included explicitly in 

the analysis under two variables: the number of years since the host crop was cultivated 

and the number of years since the last grassland. Most bioagressors were unaffected at 

the exception of two pests and three pathogens (Fig. 2a). In addition, the scale associated 

with the host crop surface was large, 5 km for the pathogens and 1km for the pests (Fig. 

2a), indicating that these processes were occurring well beyond the field scale.  

These findings also highlight the spatiotemporal aspect of the relationship between the 

surface of the host crop and the bioagressors abundance. For pathogens, the median scale 

to which the host crop surface has the highest correlation with abundance is lower for the 

current year (200 m) than the previous year (5 km) (Fig. 2a). For the group of pests, the 

scale is similar (1 km) between the host crop surface of the current and previous year 

(Fig. 2a).  

 

3.4. Former bioagressors prevalence and host crop surface 

Under the assumption that the host crop surface of the previous year is positively related 

to bioagressors colonization, a second model was performed. We explicitly took into 

account the bioagressors prevalence of the previous year (the departmental level), to 

model its effect on the abundance the next year on the plot. A positive relationship was 

found for 25 of the 30 bioagressors. The number of bioagressors positively affected was 

then was highly significant (Fig. 2b, P < 0.001) for pest and pathogens. The relationship 

was not only found often, it was also very strong: partial correlations were the highest 

among explanatory variables for the different models (Sup. material II)  
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For the pest, the values ranged from 7% for Phyllotreta nemorum to 13% for Meligethes 

aeneus (Sup. material II.A). The range was larger for the 13 significant association among 

the 17 pathogens: from 1% for Leptosphaeria maculans to 27% for Cercospora beticola 

(Sup. material II.B). Phytophthora infestans was the only organism showing a negative 

correlation with the departmental abundance of the previous year (Sup. material II.B).  

Interactions with the host crop surface of the previous year was also significant for pests 

(Figure 2b, P < 0.01) and pathogens (Figures 2b, P < 0.05). A higher number of organisms 

was positively correlated with this variable for both groups. When including the 

departmental abundance of the former year and its interaction. Values of partial 

correlations for the interactions were lower than the former prevalence alone (Sup. 

Materials).  Concerning the pest group, the interaction was sometimes selected instead 

the host crop surface of the previous year. The number of pests affected by the latter 

variable was no longer significant (Fig. 2b). In contrast, pathogens were often affected by 

both the interaction and the host crop surface of the previous year.  

As a result, the host crop surface of the previous year was related to the former year 

prevalence, indicating that the amount of host crop in the landscape may be a transmission 

path for bioagressors to remain from a cropping season to the next.  

 

1.1. Bioagressor models performances 

Most of the bioagressor models attained a reasonable goodness of fit, however, for a small 

number of bioagressors, the test of goodness of fit was not passed.  Adjusted D2 was used 

to quantify how much landscape components and bioagressor prevalence could explain 

variation of bioagressors abundance. Adjusted D2 varied from 5.4% in the Phyllotreta 

nemorum model to 34.9% in the Psylliodes chysocephala model, among the crop pest 

models (Table 3a). For the crop pathogens models (Table 3b.), values ranged from 0.0 % 

in the Helminthosporium spp. model to 53.5 % in the Phytophthora infestans model. In 

average, we were able to explain 19.3 % of the pest abundance variation and 21.2 % of 

the pathogens abundance variation.  
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Table 3b. Pathogen models’ amount of deviance accounted for the landscape variables and inoculum 

variables 

Crop  Pathogens D2 (%) 

Winter wheat Blumeria graminis 24.4 

Fusarium Graminearum 9.7 

Gaeumannomyces graminis 12.0 

Helminthosporium spp. 0.0 

Oculimacula spp. 12.8 

Puccinia striiformis 24.7 

Puccinia triticina 18.6 

Septoria tritici 
 

24.0 

Winter barley 
 

Helminthosporium spp. 19.7 

Rhynchosporium secalis 
 

19.3 

Oilseed rape 
 

Leptosphaeria maculans 9.5 

Sclerotinia sclerotiorum 
 

11.7 

Sugar Beet  

 

Cercospora beticola 37.8 

Erysiphe betae 8.7 

Ramularia betae 33.9 

Uromyces betae 
 

41.0 

Potatoes  Phytophthora infestans 53.7 

 

 

 

 

Table 3a. Pest models’ amount of deviance accounted for the landscape and inoculum variables  

Crop Pests D2 (%) 

Winter wheat Cecidomyiidae spp. 3.9 

Deroceras, Arion, Limax spp. 17.8 

Rhopalosiphum padi 8.7 

Sitobion avenae 
 

11.2 

Corn  
 

Ostrinia nubilalis 
 

17.6 

Oilseed rape Brevicoryne brassicae 26.4 

Ceuthorhynchus napi 21.5 

Ceutorhynchus assimilis 20.9 

Ceutorhynchus picitarsis 32.0 

Meligethes aeneus 20.4 

Myzus persicae 27.6 

Phyllotreta nemorum 5.8 

Psylliodes chysocephala 36.7 
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4. Discussion 

This study highlighted that landscape composition holds consistent effects on variation 

of pest abundance, for 30 bioagressors major arable crop, supported by 9 years of field 

observations over two third of the French territory. The most consistent effect is the 

positive relationship of bioagressor abundance with the surface of sensitive crops the 

former year. For most of the bioagressors, their abundance is highly correlated to their 

abundance of the preceding year. Semi-natural areas, while also affecting bioagressors 

abundance, were inconsistent in the direction of their effects, either detrimental, neutral 

or beneficial depending on the bioagressor population.  

These findings are supporting the well-recognized evidence that landscape composition 

is regulating bioagressors epidemics in crops. Its role on pest arthropods has been 

extensively reported for multiple organisms (Bianchi et al., 2006; Chaplin-Kramer et al., 

2011; Karp et al., 2018). Crop pathogens received less attention regarding the effects of 

landscape (Plantegenest et al., 2007) with a lack of empirical results (Burdon and Thrall, 

2008; Claflin et al., 2017). However, their relation is well-recognized as well. Our global 

approach combining long term pests and pathogens data, following Barbu et al., (2016), 

is original in the investigation of bioagressors and landscape relationship. As crop cover 

spatiotemporal variations tend to affect most of the organisms, this gives potential for 

bioagressors modulation at the landscape scale through crop cover management.  

 

4.1. Host crop cover and interannual variation of bioagressors abundance 

The extent of host crop surface in the landscape during the previous cropping season had 

the most significant and consistent effect among landscape components for pest and 

pathogens (Fig. 2,4). As opposed, the host crop surface of the current year that (1) tend 

to have opposite effects for pests and pathogens. This highlight the importance of 

integrating the temporal dimension of landscape effect in bioagressors epidemic studies. 

This is unfortunately rarely considered as denoted by (Karp et al., 2018) resulting in 

potential bias in the conclusion of short term studies (Chaplin-Kramer et al., 2011).  

Accounting for cropland temporal dynamics allowed us to observe contrasted effect of 

the host crop. Indeed, host crop surface was positively correlated with pest abundance the 

previous year, and negatively the current year. Our results align with the literature 

regarding the sole spatial effect of cultivated area on pest abundance, when considering 

total cropland (Perez-Alvarez et al., 2018) or the host crop area (Veres et al., 2013). It is 

observed here that large host crop area is not linked to high abundance of pest arthropods 

within the cropping season. Nevertheless, expansion of host crop area from a year to 

another have been linked to reduced pest abundance through a dilution effect and 

reduction of host crop to a crowding effect of the population in the landscape (Schneider 

et al., 2015; Thies et al., 2008). In this study, we did not explicitly account for the dynamic 

change of host crop area, but rather study the combined effect of two temporal states, the 

current cropping season and the previous one.  However, our results are coherent with 
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these findings. In addition, these dynamics of pest abundance related to landscape 

diversity have a relative importance regarding the potential biocontrol of natural enemies, 

that can be reduced in low diversity landscape (Gardiner et al., 2009; Rusch et al., 2016).  

Pathogens prevalence in the landscape, on the other hand, in showing a different behavior 

regarding the effect of the host crop area. As observed here, high host abundance during 

the cropping season have been reported to increase pathogens prevalence (Carrière et al., 

2012; Claflin et al., 2017; Gilligan et al., 2007; Rodelo‐ Urrego et al., 2013). High host 

crop density, regardless landscape configuration, is likely to facilitate diseases 

transmission with increasing crop connectivity (Margosian et al., 2009).   

While we recognized that crop protection management and crop rotation can disrupt 

bioagressors populations, other factors are affecting interannual variation (Head et al., 

2005). We argue that former prevalence is a key component (Fig. 4) for bioagressors 

abundance temporal variation. The regional pool of the previous year determines the one 

in the subsequent year and act as a feedback on the bioagressors prevalence (Levins and 

Schultz, 1996). Significant interactions between host crop area of the previous year and 

the prevalence of the previous year implies that host crop surface is the limiting factor for 

bioagressors population to sustain throughout time. For pathogens, inoculum density is a 

major factor underlying the probability of pathogens occurrence. Landscape composition 

can be determinant for the abundance of inoculum reservoirs (Plantegenest et al., 2007). 

Such reservoir could consist in cultivated or wild host (Gilligan et al., 2007; Papaïx et al., 

2015; Plantegenest et al., 2007). Temporal correlation in pest variations has been 

observed for pest (Bommarco et al., 2007; Chaplin-Kramer et al., 2013; Day et al., 2010; 

Lewellen and Vessey, 1998). However, yearly variations of pests abundance need to be 

analyzed cautiously because yearly aggregation may hide important information 

depending on the organism life cycle (Chaplin-Kramer et al., 2013; Lewellen and Vessey, 

1998). 

 

4.2. Semi-natural areas and landscape diversity 

Despite frequent pest level significant relationships, the pest prevalence did not show 

consistent responses to semi-natural habitat area. The pathogens response was generally 

lower and no more consistent.  

The role of landscape composition regarding the proportion of semi natural area to sustain 

natural enemy communities has been extensively studied. However, they often yield 

contrasted conclusions regarding their effect on pest abundance. They concluded either 

on suppressive (Bianchi et al., 2006; Veres et al., 2013) or mixed effect (Karp et al., 2018; 

Yang et al., 2019). Contrast between studies have been discussed (Tscharntke et al., 2016) 

involving several mechanisms preventing beneficial effect of non-crop elements in the 

agricultural landscape: pest-predator equilibrium, potential role of the crop as habitat for 

predators and semi-natural area for pests, landscape configuration and agricultural 

practices.  
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Concerning pathogens, the effect of natural areas on their prevalence is recognized as 

well but lack of empirical studies. While some elements in the landscape may act as 

barrier preventing the spread of pathogens, the presence of alternative wild host in semi-

natural areas can actually offer secondary habitat for diseases to remain in the landscape 

(Papaïx et al., 2015). Plus, the ecological interface between crop and non-crop area have 

been discussed to be a potential reservoir to non-crop host (Burdon and Thrall, 2008).  

In this regard, the role of landscape configuration might be a more relevant pathway to 

study the relationship between bioagressors and semi-natural areas. The amount and 

composition of crop-non crop and crop-crop borders is recognized as determinant for 

pests (Bosem Baillod et al., 2017; Martin et al., 2016) and pathogens (Plantegenest et al., 

2007). These interfaces, associated to the crop dynamics, are likely to evolve more rapidly 

than the proportion of natural area itself, and could explain more.  

 

4.3. Methodological considerations and limitations  

While generalized linear modeling has been widely employed in the field of ecology for 

habitat distribution (Guisan and Zimmermann, 2000), in particular in the presence of 

relative abundance data, our analysis need to be interpreted cautiously. Variables 

selection was very discriminant, by accounting for year, climate and farming system 

potential heterogeneity and thanks to the restrictive regularization of the lasso algorithm 

(Hastie et al., 2009). However, the very high number of potential features (27) and the 

potential collinearity between the spatial scales (200, 1000, 5000, 10000) or between 

periods (y, y-1) increases the risk of arbitrarily selecting features for each individual 

bioagressor though it should not affect a general significant tendency across bioagressors. 

Consequently, we emphasize the interpretation of significant tendency across 

bioagressors (Fig. 2, 3) and avoid interpretation of individual bioagressor-explaining 

factor relationship.  

Bioagressors abundance was represented in this study as the percentage of observations 

that exceeded a threshold during a year of observation on a plot. In the presence of 

multiple metrics for measuring prevalence (Table 2) such as abundance (count), crop 

colonization (%), crop damage (severity scale) it was necessary to standardize prevalence 

under a general variable representing the potential number of outbreaks during the 

observation period. This approach is also recommended by (Chaplin-Kramer et al., 2011) 

to provide a more robust understanding of the bioagressors prevalence dynamics. It is 

important to notice, that such metrics may reduce undesirable variability due to data 

quality regarding (1) the precision of national landscape database and (2) potential bias 

due to numerous observers on the field (3) the subjectivity of measurement metrics such 

as severity scale.  

The study was tailored to identify general tendencies applying exactly the same modeling 

approach to all the bioagressors. Applying similar explanatory variable on different 

bioagressors response metrics might lead to different conclusions, and other bioagressor 
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observations may be more related to the economic impact on the crop (Devaud and Barbu, 

n.d.). In addition, individual studies of the different organisms would benefit from a better 

consideration of organism functional traits to unravel hidden effect of landscape 

composition for some groups of bioagressor (Karp et al., 2018; Martin et al., 2019; 

Schellhorn et al., 2014). 

A reasonable part of variation was explained by landscape components and former 

department prevalence, 20% in average between the bioagressors models. However, the 

modelling technic used here leave potential to complexify the pest and pathogens models. 

Such models could integrate (1) variables related to crop management (Martin et al., 

2016), and (2) abiotic factors related to known pedoclimatic conditions of the field or 

predictable meteorological conditions. In addition, the effect of landscape configuration 

on pest and pathogens may also be included  (Martin et al., 2019; Papaïx et al., 2015) to 

go beyond our conclusions on plain landscape composition.  
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5. Conclusion  

Considering that crop cover can easily be manipulated in the landscape from a year to 

another, this gives opportunity for the design of landscape crop cover optimizing control 

of bioagressors abundance and limiting outbreak in arable crop (Schneider et al., 2015). 

The joint study of pest and pathogens, while having different spreading strategies has 

potential for a global crop protection management.  

Our findings support the idea that landscape simplification around a same crop does not 

in general favor epidemic outbreaks during the current growing season, but rather that its 

detrimental effect lie in the season ahead. Under current management practices, landscape 

wide rotation of the main crop types might decrease abundance of bioagressors, by 

preventing bioagressors spillover between cropping seasons (Gilligan et al., 2007). This 

lever may be debatable regarding the potential effects on the non-pests biodiversity 

(Rusch et al., 2016). 

Toward the conception of bioagressors management practices at the landscape scale, this 

study brings responses on the consistency of landscape effects by using available tools 

and data to quantify automatically in an interpretable way the general impact of landscape 

components. Further work is needed to move toward bioagressors predictions for 

seasonal forecasting. Early warning system tools based on this approach may provide an 

advantage to assess the risk of potential yield loss and an opportunity to moderate the use 

of phytosanitary products (Lacasella et al., 2017). Alternative practices for bioagressor 

control, as highlighted here by the large scale at which the landscape has an impact, have 

potential if implemented at a large scale. However, the challenge lies in the organization 

of new land management units involving a maximum number of stakeholders of the 

agricultural landscape, who often mismatch in term of objectives and perceptions (Kleijn 

et al., 2019) regarding potential benefits of ecosystem services.  
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the selected spatial scale associated with the variable. Vertical lines indicate milestone value of 0 (full), 0.10 (small 

dash), 0.20 (large dash). Pest models (A) and Pathogens (B) 
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S.P. II. Normalized partial correlation (blue) and estimate (red) for each variable, blue numbers of the right indicate the selected 

spatial scale associated with the variable. Vertical lines indicate milestone value of 0 (full), 0.10 (small dash), 0.20 (large dash). 
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