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Abstract

Plant protection products is considered a threat to the environment and people health.
The public opinion urge the farming sphere to reduce the use and impact of the pesticides.
This study focus on predicting the control practice of the farms in the Dephy network and
crop yield in order to estimate the loss of productivity and of margin if pesticide use is
reduced. The prediction of the yield and of the pesticide use was achieved by Machine
Learning (ML) models based on meteorological, soil, pest and diseases and cultural prac-
tices data. The ML technique is a modern approach usually efficient way in achieving
practical solutions for this kind of problems. Calculating the optimal use of pesticides
according to the raw economical margins will allow farmers to determine whether they
should increase or decrease the treatment. We show that the use of pesticide could overall
be decreased on a majority of crops in the farms of the Dephy network. Nevertheless, for
some crops, the yield could be increased with a higher use of pesticides. Beyond the crops
where the pesticide use could be reduced in this sample, the use of pesticide in France
could be reduced by encouraging farmers to adopt practices of the Dephy network as it
uses less pesticides than the average farms in France.
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Résume

Les produits phytopharmaceutiques sont considérés comme une menace pour
l’environnement et la santé des personnes. L’opinion publique pousse le monde agricole à
réduire l’utilisation et l’impact des pesticides. Cette étude se concentre sur la prévision
des pratiques de contrôle des exploitations du réseau Dephy et du rendement des cultures
afin d’estimer la perte de productivité et de marge si l’utilisation des pesticides est ré-
duite. La prédiction du rendement et de l’utilisation des pesticides a été réalisée par des
modèles d’apprentissage automatique (ML) basés sur des données météorologiques, des
données sur les sols, les parasites et les maladies, ainsi que sur les pratiques culturales.
La technique de l’apprentissage machine est une approche moderne, généralement efficace
pour trouver des solutions pratiques à ce type de problèmes. Le calcul de l’utilisation
optimale des pesticides en fonction des marges économiques brutes permettra aux agricul-
teurs de déterminer s’ils doivent augmenter ou diminuer le traitement. Nous montrons que
l’utilisation de pesticides pourrait globalement être réduite sur une majorité de cultures
dans les exploitations du réseau Dephy. Néanmoins, pour certaines cultures, le rendement
pourrait être augmenté avec une utilisation plus importante de pesticides. Au-delà des
cultures pour lesquelles l’utilisation de pesticides a pu être réduite dans cet échantillon,
l’utilisation de pesticides en France pourrait être réduite en encourageant les agriculteurs
à adopter les pratiques du réseau Dephy, car il utilise moins de pesticides que la moyenne
des exploitations agricoles françaises.

Mots clés: TFI, pests, bioagressor, modelling, crop yield, RU
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Chapter 1

Introduction

1.1 General Introduction

Numerous scientific studies propose the possibility of reducing the pesticide use without
loss of productivity. This reduction will not only benefit the farmers but also ease
the impact toward our environment. In general, the goal of the project is to develop
the statistical models and design the innovative tool or mobile application in order
to provide farmers with relevant information to adjust their control practices. It
will provide farmers with a reliable, real-time estimate of the risk associated with
pests, enabling them to know when they should treat their fields. This will involve
developing the epidemiological models capable of predicting the pest pressure, yield and
possibly agricultural practices for farmers in real time depending on available information.

In this study we focus solely on the development of models to predict the farmer
practices and yield based on the information provided by farmers in an existing data
set. The Dephy farm network is a group of farms engaged in a process of reduction of
pesticide use. They have proved over the last years to use consistently less pesticides than
the average farms in France. This matchless data set could allow us to advise farmers to
not only fit models allowing to define optimal pesticide use but also to help other farms
to follow similar practices.

1.2 Theoretical Background

The use of pesticide has been mentioned as having negative effects toward environment
and health[Wilson 2001]. It becomes a social pressure that the use of these plant
protection products should be lessen or even stop. Many scientific studies suggest that
reducing the use of pesticide without production loss is possible. However, some studies
claim that the reduction of plant protection products does not only affect farmer in-
comes, but also their total production costs [Jess 2014][Di Tullio 2012][Vasileiadis 2015].
Whilst, other studies state that reducing the use of pesticide is possible without
having negative effect on or even increase the productivity and profitability of farms
[Lechenet 2014][Hossard 2014][Frisvold 2019]. Likewise, the researchers concerned with
the marginal productivity of pesticides to measures of how much yield production
change with regards to small changes in control that lead to various statistical modeling
assumptions. A former study on the analysis of the economic impact of reducing the
pesticide at the national level (Florence 2011)[Jacquet 2011], found that a 30% reduction
of pesticide use could be achieved without reducing the farmers income and suggests
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using a combination of statistical model with data from different source to explicate
the alternative techniques of low pesticide use at the national level. This also implies
combining different techniques that achieve various level of pesticide reduction. The
evaluation of the effect in terms of overall reduction of the pesticide use level was
achieved by using quantile regression and stochastic frontier analysis to estimate the
yield losses [Hossard 2014]. In 2017, a study on reducing pesticide use without affecting
the productivity and profitability (Lachenet 2017) [Lechenet 2017], has analysed the
conflicts between pesticide use and productivity or profitability in arable farm. The
result shows that the use of plant protection products could be reduced by 37%, 47%,
60% for herbicide, fungicide and insecticide respectively and over all the crops without
any negative effects on revenue or production. However, from the above studies, the
experiments were only on a few classes of pesticide and could not identify which pesticide
that should reduce or stop without having negative impact.

Moreover, another study shows that meterological, soil and pest control levels have
a reliable connection to yield [Devaud 2019]. The variables were linked to departmental
yield which allowing to accurately predict the yield. It is probably possible to estimate
yields and control practices with a similar approach by considering the information on
the practice given in the plot.

1.3 General project objective

In this project, we propose a solution to help farmers reduce the amount of pesticides
used while having less impact on productivity. This is done by convincing the farmers
to follow the practices similar to the Dephy farm network. Estimates of the optimal
treatment would likely provide the farmers with information on control practices to
determine whether to use more or less treatment at any time. Such a reduction would be
beneficial for the environment and consumer health.

1.4 Challenges

Several challenges to deal with this project are associated with (a) the preprocessing of
the new and expended dataset on yield and pesticide use; (b) the difficulty in adapting
the statistical approach of Devaud et al. at departmental level to a farm or field level to
estimate yield and incorporate the use of pesticide into yield estimation; (c) the design
of generic approaches and pipelines that can be applied to multiple diseases and crops.
(d) The way to identify farmers that could reduce their pesticide use; (e) Finding a
methods to quantify the possible reduction in pesticide use; (f) The development of a
pesticide model that would in real time advise farmers reliably and allow them to reduce
pesticide use without loss of margins; (g) avoid confusions due to correlations between
good cropping conditions, the presence of pests and the use of pesticides that can lead
to to apparent improvement of the yield with increased presence of pests or reduced use
of pesticides. This type of confusion is a major challenge when doing statistical models,
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hence we need to check the behavior of the mode to ensure there is no mistake du to this
type of confusion and avoid wrong recommendations.

1.5 Contribution

We applied statistical and machine learning models on a large set of data from the
Dephy farm network, meteorological data, epidemiological surveillance data, IGN, etc.
The model takes into account the three categories of pesticides (fungicide, insecticide,
herbicide) on 12 crop types. The modelling of many different pests and diseases would
undoubtedly be associated with the modelling of treatments and their effects on yield.
The development of these predictive models was first to analyze and link the determinants
of weather, soil, pests and diseases to yield and control practices. The group of farms
need to be combined based on their pesticide application as an additional determinant of
control practice. Finally, we implement the practice models that are capable of predicting
the treatment of the farm based on its production situation. In this way, farmers could
be convinced to follow the minimum control practice of the Dephy farm network. We also
analyzed the correlation between the level of pesticide use and the yield. By taking into
account this information on practices, and the prediction of the yield given by models, it
is possible to estimate the margin of productivity and find the optimum pesticide use.
Base on the optimum of the pesticide use, it is possible to inform individual farmer to
increase or decrease their use of pesticide without having impact on the productivity and
assess the total potential reduction.





Chapter 2

State of the art

2.1 Machine Learning for Crop Yield Prediction

There are many different machine learning strategies that have been used to model the
crop yield. As mentioned in [Qaddoum 2014], temperature, CO2, vapor pressure deficit
(VPD) and radiation, such information were able to model the crop yield based on Naive
Bayes supervised learning method since it can directly deal with both continuous and
discrete predictors. The model was applied with the constraint of an L1-penalty. Thus,
the linear combination of the likelihood contributions of each predictor was introduced
and chosen in order to obtain a maximized result. the variables which contribute the
most to the likelihood will have high priority. A LARS type algorithm [Boullé 2007] was
also applied to compute all the regularization at once, this is known to to be efficient and
making it to be applicable for wide range data.

[González Sánchez 2014] proposed a comparison study on the different regression
methods to predict the yield in ten crop datasets. The yield was characterized by eight
potential attributes (irrigation, water depth, planting area, rainfall, solar radiation,
maximum, average and minimum temperature). Multiple linear regression, M5-Prime
regression trees, perceptron multilayer neural networks, support vector regression and
k-nearest neighbor methods were used to build the models. The evaluation methods
were root mean square error (RMSE), root relative square error (RRSE), normalized
mean absolute error (MAE) and correlation factor (R). The results after evaluation show
that M5-Prime achieved the best predictions with the lowest RMSE and RRSE and the
highest R, while KNN obtained the second lowest error for both RMSE and RRSE. Thus,
the study suggest that the M5-Prime is a fairly suitable technique for modeling the crop
yield.

As stated in [Priya 2018] the Random Forest algorithm is also a good model for yield
prediction, it was used to check the yield of the crop as per the hectares. The data such
as rainfall, perception, production, temperature were used to construct Random Forest
in order to forecast the yield. The result shows that the algorithm allowed to achieve
accurate prediction for a yield.

[Bondre 2019] present Random Forest and Support Vector Machine (SVM) for
forecasting the crop yield. The yield was characterized by location, soil, crop nutrients,
and fertilizer. The research shows that the Random Forest model which was used to
perform the soil classification achieved higher accuracy with 86.35% compare to SVM.
Whilst, SVM had an impressive performance in predicting the yield with 99.7% accuracy.
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Another study [Devaud 2019] was able to characterize the achievable yield from
meteorological and soil data. The GAM-LASSO regression was carried out on the
monthly meterological data on the department. This allowed the model to select the most
relevant variables. the linear regression was first used to estimate the correlation between
the yield and pests. The result shows that it is possible to use the yields of one crop as a
proxy for the yield of another crop because it is not affected by the pests of the crop.

2.2 Modeling the Yield Accounting for Control Practices

As mentioned in [Hossard 2014] the cropping system experiments were used to measure
the reduction in the achievable yield from decreasing the pesticide product for winter
wheat in France. From the experiment the TFI, which corresponds to the level of
pesticide use, was calculated for the 176 wheat plots of the dataset. The study used
the two statistical technique, quantile regression and stochastic frontier analysis. The
Quantile regression was used in order to explain various parts of the yield distribution
corresponding to different quantiles. The stochastic frontier model made it possible to
determine a function relating to maximum possible achievable yield for a given TFI. From
both methods, two functional forms together were considered a success for relating yield
to the farmer control practice.

[Lechenet 2017] The study shows that the use of pesticide products could be deducted
by 37%, 47%, 60% of herbicide, fungicide and insecticide respectively without having any
negative effects on revenue or production by assuming the farms could adopt the farming
systems of their neighborhood farm. It was used data from a network of 946 non-organic
arable French demonstration farms with different levels of pesticide use. To access the
marginal TFI effect, two models were fitted with Lasso regression, one for crop productiv-
ity and another one for profitability. The models were also taking into account the direct
and indirect effect of production situation factors with TFI. Then, the potential pesticide
use reduction was estimated by grouping the farms that are in non-conflicting situations
and computing the Euclidean distances between all of the farms from the sample. For each
farm, they assigned the neighborhood that were in similar production context. The farms
that used the lowest amount of pesticide product were considered as having the target TFI.

[Schreinemachers 2020] proposed a methods in predicting the overuse pesticide by
using regression analysis to identify its determinants. The exponential specification was
used in this study by allowing the decrease marginal returns to pesticide use which could
ensure that the pesticide productivity is clearly not overestimated. This method had been
used in many previous studies and achieved robust results [Skevas 2012] [Pemsl 2005].
The data that used in this study was conducted in Vietnam, Laos and Cambodia. The
pesticide use was quantified by making a frequent survey of the product application and
the average amount applied each time and for the total spending on those pest products.
Since the data contained plenty of zero pesticide application, which made it impossible
to use a standard regression model as it will lead to high biased. It was also unclear
whether the zero represent the farm had no control over or the zeros represent missing
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in responses. As stated in [Humphreys 2013] the suitable estimator depends on the real
reason for the zeros, thus it was suitable to apply linear hurdle model in this case. The
results of the study suggests that if the farmers use biopesticides, rotate beans and leaf
mustard with other crops, use insect nets, or picking the insets in the field by hand, the
overuse pesticide products could be deducted by 68%, 74%, 39%, 34% respectively.
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Methodology

3.1 Data preparation

3.1.1 Climate Dataset

The climate data were extrated from gridded data (8km apart) produced by the Safran
meteorological model of Météo-France from 1951 until 2017. It consists of thousands
of csv, each csv representing the weather information for a particular location. The
data_grid.csv which represent the grid_id, Latitude and Longitude of each grid. Our
goal was to build a table which describes the monthly weather over the commune and
departments in France concerning the average climate of each month for a given year of
harvest, that is to say from August 1st of the preceding year to July 31st of the harvesting
year for winter crops and from January 1st to December 31st of the harvesting year for
summer crops.

There are ten variables that describe the climate:

• the minimum temperature.

• the maximum temperature.

• the average temperature.

• Evapotranspiration (ETP in mm).

• precipitation (mm).

• radiation.

• the number of raining day,

• number of days where the minimum temperature was lower than -17,

• number of days where the maximum temperature was between 0 and 10,

• number of days where the maximum temperature was higher than 34.

3.1.1.1 Department level.

In order to obtain data for all the departments in France, we used a map of French
Departments. To calculate the weather data of a department, the values at all grid points
within the departments boundaries were averaged. The observation were than averaged
for a given observation year.
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3.1.1.2 Commune level

Step1: Identify the matching point between the weather location and commune.

As the identification and importation of the points around a commune is time
consuming, we first determine the distance of each grid point to each department.
This serves as an index to communes then compute the distances between points and
communes only for points of the same department.

Note: in the first attribution of the grid points to the department we added a buffer
of 8km around each department, so that the point within a department will be always
under 8km around.

We compute five department at a time. For each iteration, all the commune names of
each department were extracted. The weather grid was extracted for only the point within
a department. After that, boundaries of those communes are used to find the intersection
between the weather grid of a department and points within communes (plus a buffer of
8km as communes might be falling between grid points). To then allow computation of
an average weighted by the observations in a given year.

Step2: Extract the weather of the commune.

First the annual and monthly averages on each grid points were computed, then we
averaged them in a commune, using an averaged weighted by observations within an
observation year.

3.1.2 Pest and disease data on commune level

The prediction of both practice and yield model were analysed base on the pests and dis-
eases or commonly referred to as the bioagressors. These observations of the bioagressors
come from the Vigicultures R© database. This system centralizes a large share of the data
from the national epidemiosurveillance network (Réseau d’épidémiosurveillance national)
and was developed by the French agricultural institute ARVALIS-Institut du végétal.
These weekly observations were then average by year for a given plot. We were able to
extract those observations of pests and diseases for 6 different crops.

The process is similar to what is done in weather observation. we first averaged those
observation into yearly, then we determine the distance of each point to each department.
This serves as an index to communes then compute the distances between points and
communes only for points of the same department. We added a buffer of 20km around
each department, to allow only the points that fall within the 20km of the department.
Then for each communes, we calculated the average observation in a year by using an
averaged weighted by the inverse of the distance.



3.1. Data preparation 11

Crop name Pests and Diseases

Winter Soft Wheat Septoria leaf blotch
Gall midges
Fusarium wilt
Silver scurf
Slug
Barley powdery mildew
Take-all
Eyespot
Bird cherry-oat aphid
Aphid
Yellow rust
Brown rust

Winter Rapeseed Rape flea beetle
Turnip flea beetle
Rape weevil
Cabbage seed weevil
Rape steem weevil
Pollen beetle
Blackleg disease
Cabbage aphid
Green peach aphid
White mold

Beetroot Ramularia leaf spot
Cercospora leaf spot
Beet powdery mildew
Beet rust

Winter Barley Silver scurf
barley scald

Potatoes Potato late blight
Maize Corn borer

Table 3.1: Available pests and diseases for crops

3.1.3 Soil data on commune level.

The Soil parameters, were obtained from Gis Sol. The capacity of available water
(Réserve utile, RU) of the commune was computed as the weighted average of the classes
in the polygon of the commune. From a very large number of communes in France, we
extracted only the communes that are in Agrosystem, the data base of the DEPHY farms.
There were 3007 commune in total from Agrosystem, while we found 2962 that matched
to the commune shape file we had. Thus, 42 or 1.5% of the commune were discarded.

There were initially 5 classes of RU:
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Classes of RU.

• Class 1: lower than 50 (mm) –> weight = 25

• Class 2: between 50 and 100 (mm) –> weight = 75

• Class 3: between 100 and 150 (mm) –> weight = 125

• Class 4: between 150 and 200 (mm) –> weight = 175

• Class 5: above 200 (mm) –> weight = 225

• Class 9: Lacks/cities

We joined the intersection between the communes and the RU points. The Polygon of those
commune and RU together were then grouped correspond to different classes. Finally, the
RU of the commune was computed as the weight average of the different classes in the
polygon.

3.1.4 Farm practices and yield dataset

The data set consists of the data from the Agrosystem data base, mainly from the
DEPHY-FERME network, but also from DEPHY-EXPE (a network of experimentations
with less pesticides), and some data from outside the DEPHY organisation. There are 16
tables in csv format, which in two different types of information:

Realised: It describes the events that took place on each plot and year of harvest:
crops present, cultural interventions, measurements and observations.

Synthetic: Here, the spatial concept of "plot" is no longer used. It describes the
events related to several plots corresponding to the same step in the rotation (i.e same
crop, same previous crop, same rank in the rotation). It covers one harvest year or even
several harvest year.

To respect the Data Protection Act, the dataset was already anonymized by deleting
the names of farmers, farms and plots. But, we still have the name of the town (and the
Department), and the Dephy farm number (domain).

In this study we account for 12 different grain crops: winter soft wheat, winter rapeseed,
winter barley, spring barley, beetroot, potato, maize, winter durum wheat, spring pea,
winter pea, triticale, and sunflower.

3.1.4.1 Formatting of the control practice data

In this section, we aimed to produce a table which contains the level of pesticide use on
the field, farm, and department levels. The table is available in supplementary material
Table. A.2.
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Calculating the TFI

The Treatment Frequency Index (TFI) is an indicator measuring pesticide reliance.
It can be assessed for all pesticide applications (total TFI) or considering separately each
pesticide category (e.g. herbicide TFI, fungicide TFI, insecticide TFI). In this study
the TFI was calculated according to the manual released in 2018 from the Minister of
Agriculture in France [services du ministère en charge de l’agriculture 2018].

TFI treatment: The general idea of the TFI is to divide the dose per hectare applied
in the field by a full dose of reference. The ANSES provides such references for each
authorized product, and often several per crop depending on the target (bioagressor) and
sometime the stage of the crop.

TFIt “
DA

DR
ˆ PST (3.1)

with: DA: applied dose, DR: reference dose, PST: proportion of treated surface.

TFI plot: The TFI for the plot a given year was assessed by taking the sum of all the TFI
treatments.

TFIplot “
ÿ

t

TFIt (3.2)

with : t : the treatments carried out during the given period

TFI farm: The TFI farm level was retrieved by calculating the average of the TFI of the plots
in a farm, weighted by the surface of each plot.

TFIfarm “

ř

plotspTFIplot ˆ Surfaceplotq
ř

Plots
pSurfaceplotq

(3.3)

TFI department: The TFI department level was accessed by calculating the average of the
TFIs of the farms of the DEPHY network in the department, weighted by the cropping surface
for all the grain crops of the farm.

TFIdepartment “

ř

farmspTFIfarm ˆ Surfacefarmq
ř

farmspSurfacefarmq
(3.4)

Preprocessing the yield

The annual yields for the different crops come from the Agrosystem dataset. There are
several action type for the yield. The action types distinguish the different technical aspects of
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a harvest. For example, harvesting of the grain and baling of straw for cereals. There are also
different products which correspond to the nature of the harvest such as straw, grain, fruits of
different caliber and quality, etc. In fact, there are several situations that explain why there are
several yields on the same plot in a given year:

• Very frequent case of fodder such as alfalfa and other temporary meadows in which there
are several harvests on different dates. In this situation, the crop yield is rather the sum of
the yields.

• Another common case where the crop could produces two different products. In this case,
we are only interested in and keep only the grain yield.

• In some cases, there are several zones on the same plot, each with its own yield for the same
crop. In this case, the crop yield would rather be the average of the yields for each zone.
Since the number of plot that have multiple zones is less than 3% of our dataset, we decided
to remove them.

• Some crops are a mixtures of species. In this case, there may be a row for the yield of each
species. Apparently, this case is rare with less than 2% from the dataset. Thus, we could
also remove them.

• In some cases, there are several crops that follow each other in the same year on a plot. In
this situation, there will be a yield for each crop.

3.2 Modelling of the Yield

In this section, we aim to characterize the yield as a function of the TFI for three types of pesticides
(fungicide, insecticide, herbicide) in order to see if the fields using higher pesticide product would
achieve higher yield.

3.2.1 Simple modelling

To investigate the link between the yield and the pesticide use, we started with a binary and a
linear model.

For the binary model, we checked if fields with pesticide use higher than the average in their
department achieved higher or lower yields.

For a type p of pesticide (fungicide, insecticide or herbicide) in a field f we compare the
pesticide use TFIppfq to the pesticide use in the department TFIdepx, where BTFIppfq is either
0 or 1, we can write :

BTFIppfq “ TFIppfq ą TFIdepp (3.5)

And then use this binary variable to predict the fact that the yield in a field f Y pfq is higher
the average yield in the department Ydep :

Y pfq ą Ydep „ BTFIfungicidepfq `BTFIinsecticidepfq `BTFIherbicidepfq (3.6)

As the relationship might be more linear than binary, we also tested the corresponding linear
model relating the yield to the deviation of the TFI on the farm a given year on a given crop
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from the average TFI in the department the same year on the same crop.

Using the excess use of pesticide compared with the pesticide use in the department ∆TFIppfq:

∆TFIppfq “ TFIppfq ´ TFIdepp (3.7)

We apply the following linear model to explain the yield of a field Y pfq as a function of the
department yield Ydep and the former computed differences ∆TFIppfq:

Y pfq „ Ydep `∆TFIfungicidepfq `∆TFIinsecticidepfq `∆TFIherbicidepfq (3.8)

As the socio-technical conditions might vary by farm, we also test if a simple linear relationship
between yield and TFI can be found even accounting for a farm effect with a glm mixed effect
model, performed for each crop separately:

Yf „ Ydep ` TFIfungicidepfq ` TFIinsecticidepfq ` TFIherbicidepfq ` p1|farmq (3.9)

The implementation of mixed models was achieved by using R package lme4
[Douglas Bates 2020].

3.2.2 GLM-Lasso Model

The former models didn’t account for pest presence and weather variables that could be a
common cause of both yields and pesticide use. To disentangle those effects we tried to make
more complex model with a large number of variables, implying to use models performing variable
selection. We first modeled the individual crop yield by a generalized linear regression with the
Lasso for regularization on the TFI for three types of pesticide (fungicide, insecticide, herbicide),
climate, pests and diseases, and soil information (RU). We also fitted the same model with or
without the farm geographical information in order to see whether geographical information
would be necessary to explain the yield or if weather and soil information are enough. The
LASSO allows us to perform variables selection by cross validation, moreover, it allows to impose
the sign of a possible correlation [Fonti 2017]. We impose a negative sign on the correlation
between pest presence and the yields.

Moreover, we also fitted another model with geographical information by using the X and Y
center of the field. The model with geographical information obtained almost similar performance.
Because of the weather information was already very well explained. Therefore, the geographical
in this case was not necessary to use in this forecasting.

3.2.3 Random Forest Model

The Random Forest models was fitted on the same set of variables than the Lasso-glm using
five hundred trees and the default random subset. The Random Forest is a black box approach
for making statistical analysis we have limited control over the model [Liaw 2002]. The Random
Forest was performed by using the R package [original by Leo Breiman 2018].
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3.2.4 Hold Out Cross Validation

For some reason, the model performance varied each time we trained and performed an
evaluation. Thus, to ensure that the model performance is consistent, and to make perfor-
mance comparison between the GLM Lasso and Random Forest, the hold out technique was
applied with one hundred iterations. During each iteration the data set was split into seventy
percent of train set and thirty percent of test set. The variability of performance from each
model was accessed. The error metric that used to accessed model performance in this study is R2.

3.2.5 Optimal TFI modelling

Assuming reliable predictions from the Random Forest, we attempted to estimate the marginal
productivity gain or loss associated with variations in the use of pesticides according to this model.
This would allow us to find the optimal TFI of individual fields. This allows us to estimate whether
the farmers should have increased or decreased the use of pesticide to maximize their productivity.

To estimate the marginal gain linked to insecticide variations we used the average crop prices
and unit of TFI prices over 2005-2020 as calculated by [STEPHY 2013].

Crop name
TFI Fungicide
Cost

TFI Insecticide
Cost

TFI Herbicide
Cost

Selling price: context
average price (Euro/t)

Winter Soft Wheat 35 8 37 175
Winter Rapeseed 40 8 50 325
Winter Barley 45 8 40 165
Spring Barley 45 8 55 145
Winter Pea 10 12 50 150
Spring Pea 10 12 50 150
Triticale 30 0 50 140
Winter Durum Wheat 35 8 37 200

Table 3.2: Coefficient of TFI effect on crop yields

Calculate the margin of productivity
The raw margin then simply computed as:

Margin “ CropY ieldˆ CropPrice´ TFI ˆ TFIPrice (3.10)

Estimate Individual variation of the TFI to the optimum (IVO)

IV O “ OptimalTFI ´ObservedTFI (3.11)

When the IVO is positive it indicates that the amount of the pesticide application were lower
than the optimal TFI according to our model. This means that the field have a potential in
increasing the yield if additional pesticide is used. On the contrary, a negative IVO suggests that
the farmer could reduce the amount of pesticide use without reducing its gain.
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Estimate the General percentage of variation to the optimum (GVO)

We calculate the general variation to the optimum (GVO) to evaluate overall the amount
of pesticide that could be saved or that should be added to attain the maximal profit in all the
fields. This corresponds to the IVO but computed for all the plots in our sample:

GV O “

ř

plots pOptimalTFIplot ´ObservedTFIplotq ˆ Surfaceplot
ř

plots ObservedTFIplot ˆ Surfaceplot
(3.12)

We computed the GVO separately for the pesticide types we consider but also globally over
the three categories.

3.3 Modelling the Control Practices

3.3.1 Overview

We tested both Random Forest and GLM Lasso Regression to model the use of pesticides (TFIs).
We also compared the performance of the two two models by performing hold out with one
hundred iteration as described above for the yield models.

We first attempt to characterize the TFIs from meteorological, geographical, soil and
bioagressor data. Then, we also fitted the same model with or without the TFI groups (see
hereafter) allow different estimates based on the groups. Note that if the Lasso only fitted a
different coefficient for each TFI group, the Random Forest could potentially fit completely
different patterns of pesticide applications based on the TFI group, allowing to advise farmers to
follow one or the other pattern of application.

TFIfarm „ BA` TFIgroup` Climate`RU `Geographical (3.13)

3.3.2 Cluster the farm base on the control practice

The K-mean algorithm was used to cluster the field into particular group based on their practice
similarity. The TFIs were therefore normalized by taking the TFIs of any given crop field minus
the mean of the TFIs of their agro-climatic region a given year. We used Elbow and silhouette
method to choose the optimal K for the cluster model. The purpose was to group the farm-year
based on the amount of pesticide use.

3.3.3 GLM-Lasso Model

The TFIs of the three types of pesticide considered were modeled as generalized linear regression
with LASSO regularization between TFI on the one hand, and climate, RU, pest presence, farm
geographical, and TFI group on the other hand. The model was trained by performing 10 fold
cross validation. The coefficients for pests were here forced to be negative. For several TFIs-crop
couples, such as insecticides on winter soft wheat, the number of applications was very small
usually. This would not allow fitting with standard linear models. Thus, in this case we rounded
the TFI by field and then estimated the model using a logistic regression.
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3.3.4 Random Forest Model

The Random Forest models was fitted for control practices by setting the tree to five hundred.
The R2 was used for train set evaluation.

3.3.5 Hold Out Cross Validation

We applied the same method as for the yield model to ensure that the model performance
is consistent, and to compare again between Lasso and Random Forest. The variability of
performance from each model were accessed during each iteration.



Chapter 4

Experiment and Result

4.1 The pesticide use in Dephy

In this study we calculated the TFI of the three main types of pesticide (fungicide, insecticide,
herbicide) on the fields of Dephy farm network and some from other network.

To visualize the heterogeneity of pesticide use between and within crops, we represent
separately the fungicide (Fig. 4.1), insecticide (Fig. 4.2)and herbicide (Fig. 4.3)use in our sample
as boxplots for all the twelve grain crops. The crop name in French and English is available in
the supplementary material (Table. A.1)

Figure 4.1: Boxplot of TFI fungicide use from 2010 to 2019
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Figure 4.2: Boxplot of TFI insecticide use from 2010 to 2019

Figure 4.3: Boxplot of TFI herbicide use from 2010 to 2019

The fungicide products were used on all the crops even if much less on triticale, winter pea
and sunflower. The crop with the highest fungicide use was the potato. The insecticides were
rarely applied on most of the crops except for the winter rapeseed, spring pea, maize and potato.
It is obvious that the herbicide are used in similar ways for most of the crops but for beet and
once more potato that are much more treated while winter pea and triticale are much less treated.
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It is also striking that for all these crops and pesticides, the variability among fields of the
same crops is high. It is particularly striking for herbicides where a large number of outliers use
easily twice the median of the crop.

4.2 Yield Modelling

4.2.1 Statistical Analysis

Given the high variability between field for a same crop, the purpose here is to gain insight in the
relationship between the yield and the TFIs.

We first investigate the link between the yield and an increased use of pesticides in a field a
given year compared with the pesticide use of its neighbors (same department) on the same crop
the same years by applying a linear model in R which linked the TFI to the yield for different
type of crops, then plot the confident interval of each crop in a caterpillar graph.

Figure 4.4: Linear model crop yield and TFI correlation

The plot shows the estimates and the coefficient confidence intervals at 95% for the depart-
ment yield and the TFIs in the regressions for each type of crops. When the coefficient is positive
it means that higher pesticide use is correlated with higher yields. On the contrary, a significant
negative correlation means that higher yield are correlated with a reduced use of this type of
pesticide. First we observe that the field yield is for most of the crops very correlated to the
departmental yield.
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The result from the linear model suggests that half the crops have positive correlation between
yield and fungicide use while none have significant negative correlation. For the insecticide it is
more balance with three significantly positive correlation, in particular winter soft wheat, and
two significantly negative correlations (winter pea and maize). Finally, the coefficients are more
often negative fore the herbicides (4 versus 2).

We also tested the link between yield and pesticide use in a binary way with a logistic regression
in R. This more robust approach points even more strongly toward a positive correlation between
pesticide use and yield (Fig. 4.5). Only two coefficients are significantly negative : fungicide for
beet and insecticide for maize. On the contrary, significant positive correlations are observed for
six crops with fungicide use, for two crops with insecticide use and for four crops with herbicide use.

Figure 4.5: Binomial regression crop yield and TFI correlation

Finally, we tested if adding a random effect of the farm, potentially accounting for different
practices and soil quality could reduce the positive correlation of the pesticides with the yield.
The carterpillar plot here still suggests overall more significantly positive correlations (nine) than
significantly negative ones (five). This is mostly true for fungicides (seven vs. one) while it is
nearly balanced for insecticides and herbicides.

The positive relationship between the yields and the fungicide but also with insecticide for
winter soft wheat or herbicide for potato could be interpreted as a deficit of use of pesticides on
those crops. It could nevertheless also corresponds to better growing conditions leading to more
pesticide use as an insurance strategy from the farmers. On the contrary, the negative correlations
between pesticide use and the yields might correspond to more present pests or more generally
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Figure 4.6: GLM mixed effect crop yield and TFI correlation

defavorable growing conditions leading to more pesticide use without a sufficient effect of the
pesticides against those threats.

4.2.2 GLM-Lasso Model

We account for more variables, in particular pest and disease presence but also weather conditions
in our next models of the yield. As the number of variables is very important, we here use a Lasso
regularization with cross-validation to allow variable selection jointly with coefficients estimation.

Figure 4.7: Yield Model GLM Lasso on Winter Wheat
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The figure 4.7 shows the the correlation between the predicted yield and actual yield of the
winter soft wheat. The plot illustrates that the model explained poorly the yield with a 0.32 R2

while this was on the training sample.

Figure 4.8: Winter Soft Wheat Yield Lasso Model explain variable

Although the Lasso performance was not very impressive, it did allow us to see the positive
and negative correlation of the variable. The lasso model extracted the over all parameters that
have an influence on the yield. It shows the coefficients of variables that have an influence on
the achievable yield. The positive coefficients imply an increase in achievable yield, while the
negative coefficients imply the possibility of the loss of yield.

The figure 4.8 shows that the temperature is the most important factor in making this
prediction. The higher temperatures in July, August, September, December and February seem to
be the most favourable for increasing the yield in winter soft wheat. The increase in precipitation
or rainfall from January until April also provides significant increase in yield for winter soft
wheat. The minimum temperature from January to March is likely to decrease the yield. The
use of insecticide and fungicide products (TFI) also showed a strong positive correlation with the
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yield, like in former approaches, while no significant effect is found for the herbicides on wheat
(contrary to two of the former approaches indicating a negative correlation with herbicide TFI.

4.2.3 Random Forest Model

The Random Forest approach contrasted with the Lasso approach by providing an impressive
performance (Fig.4.9).

Figure 4.9: Yield Model Random Forest on Winter Soft Wheat

The Random Forest model was very well fitted with a R2 of 0.74 (out of bag estimate).
However, this performance is only on the train set and the error varies each time the model is
re-train. For this reason, applied a validation on a test data set to ensure that the performance
was persistent and acceptable.

4.2.4 Hold Out Cross Validation

Figure 4.10: Winter Soft Wheat Yield Holdout result

Based on the result of one hundred iterations, the performance of the Lasso model on winter
soft wheat was lower than Random Forest with the average R2 of only 0.31 and 0.26 for train and
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test respectively which also showed a slight overfitting with GLM Lasso. Whilst, Random Forest
out performed the GLM Lasso with an average R2 of 0.69 out of bag error and 0.70 for test. It
was considered as a good model.

The results of the model were quite consistent over a hundred iterations (Fig. 4.10). It was
really what we were expected. Moreover, we also conducted the same experiment with maize to
see the different performance of the individual crop model. Fortunately, the results were even
better than the winter soft wheat and the error were quite persistent (Fig. 4.11).

Figure 4.11: Maize Yield Holdout Result

The maize GLM Lasso model clearly performed much better than the Lasso on winter soft
wheat with an average R2 of 0.72 for train and 0.70 for test error. However, the model was still
slightly over fitting. At the same time, the Random Forest on maize was still a winner as it
obtained a really high R2 of 0.82, 0.83 for out of bag and test respectively.

4.2.5 Variable Importance, example of the winter soft wheat model

Figure 4.12: Yield Model Importance Variable (Winter Soft Wheat)

In the Random Forest, the increase in MSE (IncMSE) shows the model accuracy drop if we
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leave out that variable. The increase node purity (IncNodePurity) measures the importance of
the variable according to the Gini impurity index used for the splits in trees calculation. The
importance variables of the model from both IncMSE and IncNodePurity (figure. 4.12) explain
that the information of the pesticide use and soil play an important part in contributing to
the prediction of the yields. At the same time, the presence of the pests and diseases and the
meteorological information are also linked to yield.

4.2.6 Wheat, maize and rapeseed yield model detailed results

At last, we have no doubt the soil, meteorological, the presence of pest and diseases and the
control practice can be influential factors to predict yields. We have then linked these variables
to other crop yields on the plot level. A linear regression was run on the relationship between
observed and predicted yield to better visualize the relation. These performances were evaluated
by using the fitted model to predict the unseen (test) data.

Figure 4.13: Winter Soft Wheat, Maize and Rapeseed yields predicted and observed at
plot level

In particular, the yields of the winter soft wheat were correctly model and achieved a RMSE
of 15.009 quintal per hectare and obtained the error rate of 0.67 R2. The model for maize also
receive acceptable result with RMSE of 23.722 quintal per hectare and R2 of 0.53. Meanwhile,
rapeseed yield model did not perform quite well which the model obtained only 0.34 R2 and
RMSE of 8.54 quintal per hectare. This could be because we have smaller sample size or it needs
other practice variable to better explain for rapeseed crop.
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4.2.7 The effect of the pests and diseases and of the pesticides on yield

Even though, the GLM Lasso did not offer a satisfactory quality, it allows us to see the coefficients
of the variables that have an effect on the yield, in particular the impact of the pests. The table
4.1 shows the effect of the pests on crop yields while also accounting for the TFI with or without
the weather condition in the field. The pest and disease variables were forced to be negative or
null. We also present in table 4.2 the effect of the TFI of the three types of pesticides in these
models. To see how the estimated effects of pests and pesticides could be modulated by accounting
or not for each other and for the weather we present here the results of each alone and together
and with or without the weather.

Crop name Pest and Disease
Pests
only

Pests+
TFI

Pests +
Climate

Pests+ TFI +
Climate

Winter Soft Wheat Eyespot -1.220 -2.015 -1.265 -8.810
Aphid -2.221 -1.988 -1.753 -1.618
Gall midges -0.113 0 -2.382 -1.608
Septoria leaf blotch 0 -0.666 0 0
Take-all 0 0 -0.140 -5.343
Yellow rust 0 0 -4.157 -3.131
Brown rust -0.351 0 0 0
Fusarium wilt 0 0 0 0
Silver scurf 0 0 0 0
Slug 0 0 0 0
Barley powdery mildew 0 0 0 0
Bird cherry-oat aphid 0 0 0 0

Winter Rapeseed White mold -0.396 -0.080 -0.774 -1.007
Rape weevil -0.947 -0.597 -2.104 -2.486
Cabbage seed weevil -0.016 0 -0.446 -0.991
Cabbage aphid -0.074 0 0 0
Rape flea beetle 0 0 0 0
Turnip flea beetle 0 0 0 0
Rape steem weevil 0 0 0 0
Pollen beetle 0 0 0 0
Blackleg disease 0 0 0 0
Green peach aphid 0 0 0 0

Beetroot Ramularia leaf spot 0 0 0 0
Cercospora leaf spot 0 0 0 0
Beet powdery mildew 0 0 0 0
Beet rust 0 0 0 0

Winter Barley Barley scald 0 -2.361 0 -1.340
Silver scurf 0 0 0 0

Table 4.1: Coefficient of pest effect on crop yields

Most pests seem to show more impact when we account for TFIs and the weather or for both
even if there are exceptions. for the winter soft wheat and winter rapeseed. The diseases of the
beetroot did not show any impact on the yield. Interestingly, when we fitted only the TFI without
the presence of pests, only fungicide on winter soft wheat and winter barley. The estimated impact
of the TFI increase as the pests are taken into account and it further increase when both the pests
presence and the weather are taken into account. A surprising counter example is the negative
effect of fungicide and insecticide on the beet root when accounting both for weather and pests,
it might be related to the use of inefficient products on visible pests and diseases of beetroot that
are not accounted for here.
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Crop name Pesticide TFI only TFI + Pest TFI + Pest + Weather

Winter Soft Wheat Fungicide 5.933 8.576 6.761
Insecticide 0 0.381 1.855
Herbicide 0 0 1.140

Winter Rapeseed Fungicide 0 0.484 0.706
Insecticide 0 0.078 1.186
Herbicide 0 0.121 0.908

Beetroot Fungicide 0 0 -3.007
Insecticide 0 0 -0.504
Herbicide 0 0 1.459

Winter Barley Fungicide 2.900 3.335 5.779
Insecticide 0 0 0
Herbicide 0 0 0.879

Table 4.2: Coefficient of TFI effect on crop yields

4.2.8 Summary of the results for all the crop yield models

The yield models have been built for each crops independently in this study. However, since
the presence of pests and diseases were not available for some crops such as spring barley,
sunflower, winter pea, spring pea, triticale, and winter durum wheat. In this case, the model
were fitted with all variables we mention except the presence of pests and diseases. Thus,
the quality of those crop models could possibly lower. The table 4.3 and 4.4 summarise
all the quality of the fitted model for each individual crops. The unit of potato, and beet-
root yields are measured in tonne per hectare, whereas the rest of the crops are quintal per hectare.

Crop name OOB R2 OOB RMSE Test R2 Test RMSE
Winter Soft Wheat 0.705 14.47 qt/ha 0.676 15.328 qt/ha
Winter Rapeseed 0.450 7.797 qt/ha 0.383 8.703 qt/ha
Beetroot 0.539 13.91 t/ha 0.512 15.22 t/ha
Winter Barley 0.536 12.85 qt/ha 0.534 12.71 qt/ha
Potatoes 0.136 12.41 t/ha 0.129 10.95 t/ha
Maize 0.537 23.49 qt/ha 0.506 24.05 qt/ha

Table 4.3: Results of yield models for crops with at least one observed pest or disease

Crop name OOB R2 OOB RMSE Test R2 Test RMSE
Spring Barley 0.660 13.15 qt/ha 0.668 12.17 qt/ha
Sunflower 0.526 5.535 qt/ha 0.430 7.642 qt/ha
Winter Pea 0.489 12.65 qt/ha 0.340 13.06 qt/ha
Spring Pea 0.346 10.29 qt/ha 0.232 10.49 qt/ha
Triticale 0.589 14.56 qt/ha 0.666 13.05 qt/ha
Winter Durum Wheat 0.571 9.929 qt/ha 0.566 9.067 qt/ha

Table 4.4: Results of yield models for crops without pest or disease observations
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The results show that the majority of the crop yield models obtained an R2 between 0.3 and
0.7. Only potato yield and spring pea yield were less well modeled. Winter soft wheat, maize,
spring barley have particularly high R2. It might be thought that this is achieved thanks to a
larger number of observations, nevertheless, triticale which is very similar to wheat but with much
less observations is also well modelled (R2 “ 0.666). It then seems consistent with our observations
that cereals are better predicted while dicotyledons crops (Winter rapeseed, beetroot, potatoes,
sunflower and pea) are harder to model.

4.3 Control Practice Model

4.3.1 Cluster the farm base on the control practice

Figure 4.14: Winter Soft Wheat TFI Group

The TFI clusters were estimated separately for each crop. For wheat, the optimal number of
clusters was three: a group that used high amount of pesticide product, a group that had the
lowest TFI, and a group that was in the middle between low and high pesticide use.

The result from either fungicide or herbicide TFI shows that the group that used the lowest
TFIs were more likely to receive low yield, when the group that applied high TFIs obviously
achieved higher yield. On the other hand, the insecticide seems to explain nothing since the
insecticide product were not commonly used on winter soft wheat.

4.3.2 GLM Lasso Model

The Figure.4.15 shows that the groups of TFI use has shown a high impact on the fungicide
use. The cluster 2 which is the group that used the lowest TFI has a negative relation with the
fungicide. This could explain that the field that has less yield are likely to have low fungicide.

The capacity of the water in soil (RU) also had a fairly visible influence on the use of
fungicide. The increase in RU will more likely to increase the use of fungicide.
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Figure 4.15: Fungicide Model Lasso Explain Variable (Winter Soft Wheat)

Figure 4.16: Fungicide Lasso Model Performance (Winter Soft Wheat)

The result from (fig.4.16) shows that the Lasso prediction was not very good with a perfor-
mance of 0.47 R2.

4.3.3 Random Forest Model

The random forest for the fungicide on winter wheat was able to obtain 0.51 for out of bag error
while it can predict the whole train set with 90% of accuracy which is 0.90 of R2.
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Figure 4.17: Fungicide Random Forest Model (Winter Wheat)

4.3.4 Hold Out Cross Validation

Figure 4.18: Fungicide Model Winter Wheat Holdout result

The average performance of both model for fungicide on a test data set were similar. However,
the Lasso model still obtained somewhat lower than Random Forest with the average R2 of 0.460
for the train set, and 0.415 for the test set. The Random Forest overall received average R2 of
0.494, 0.485 for the OOB and test respectively. The result from both algorithms show a slight
overfitting.

The herbicide model with either Lasso or Random Forest were very well fitted. Only the
Lasso result is slightly over-fitting (R2 is 0.705 for train yet achieved only 0.687 with test set).
Eventually, the Random Forest again shows a better result with 0.716, 0.721 for OOB and test
respectively.
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Figure 4.19: Herbicide Model Holdout result

4.3.5 Control of the important variables in a model

Undoubtedly, the Random Forest out performs the Lasso and achieved a reasonable performance
when we characterized the pesticide use. The Random Forest was selected to build the models for
all the crops separately. Particularly, the soil, meteorological, the presence of pests and diseases,
and the group of farm clustered by the use of pesticide will probably allow the model to forecast
the three type of TFIs (fungicide, insecticide, herbicide) on the farm level.

Figure 4.20: Fungicide Model Importance Variable (Winter Soft Wheat)

The importance variable show us that the soil and the group of the farm clustered by their
control practice has a high impact on the the use of fungicide of winter soft wheat. Moreover, the
temperature in particular months and the presence of several pests and diseases such as Pietin
echaudage(PIE ECH), Pietin verse(PV) together have an influence on the use of the fungicide.
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Figure 4.21: Herbicide Model Importance Variable (Winter Wheat)

The TFI group of the farm clustered and presence of PV, PIE ECH show a remarkable
influence on the herbicide while follow by other variable of temperature and soil that have fairly
impact. Finally, It is clear that the group of farm clustered, pest and diseases, temperature, and
soil can be associated in forecasting the use of the pesticide. Thus, multiple model were built for
each type of pesticide according to different type of crops.

Figure 4.22: Winter Soft Wheat Fungicide and Herbicide Model with or without geograph-
ical information
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In this study we also estimate the relation with or without the geographical information.
This would allow us to know whether the geographical information would take part in explaining
the control practice. The model was evaluated by predicting the unseen data. The results (Fig.
4.22) shows that both fungicide models achieved almost the same performance with 0.50 R2 with
or without the geographical of the farms. Meanwhile, the two herbicide models also show the
same result with around 0.75 R2. Thus, it is obvious that the meteorological and soil variable
already explain very well the pesticide use and the geographical information doesn’t bring much
information to predict the pesticide use.

4.3.6 Model Evaluation

The models were developed for all the crops separately correspond to three categories of pesticide
products. Since the information of pests and diseases were not available for another six crops
(spring barley, sunflower, winter pea, spring pea, triticale, and winter durum wheat), in this case
those crops model were fitted without those presence of pests and diseases. However, for certain
crops that had less control over would likely to have mostly zero which lead to imbalance in the
sample. As a reason, we could not achieve those crop models. The summary below show all the
performance of the crop models, where the NA indicates the model were not available. The quality
of the models were accessed by using RMSE and R square. The error rates were obtained from
out of bag error and from predicting the test set.

4.3.7 Summary of herbicide model results

Crop name OOB R2 OOB RMSE Test R2 Test RMSE
Winter Soft Wheat 0.718 0.488 0.719 0.473
Winter Rapeseed 0.182 0.778 0.272 0.758
Beetroot 0.375 0.815 0.552 0.627
Winter Barley 0.610 0.580 0.602 0.506
Potatoes NA NA NA NA
Maize 0.756 0.424 0.754 0.456

Table 4.5: Results of herbicide models for crops with at least one observed pest or disease

Crop name OOB R2 OOB RMSE Test R2 Test RMSE
Spring Barley 0.450 0.504 0.653 0.429
Sunflower 0.599 0.402 0.420 0.352
Winter Pea NA NA NA NA
Spring Pea NA NA NA NA
Triticale 0.451 0.533 0.479 0.486
Winter Durum Wheat NA NA NA NA

Table 4.6: Results of herbicide models for crops without observed pest or disease

We were able to achieve a good accuracy with herbicide model of winter soft wheat with
around 72% from both OOB and test. The RMSE was between 0.47, 0.48 for OOB and test
repectively. At the same time, the model of maize obtained the highest performance of 75%
accuracy for OOB and test with the RMSE of 0.42 on OOB and 0.45 on test set. This herbicide
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model of maize is considered as the best model that we accomplished so far. Meanwhile, the
models for beetroot and winter barley also show a fairly good quality.

Although without the information of pests and diseases the spring barley show a remarkable
result with 65% accuracy on the test set while received 45% on the OOB. Whilst, sunflower and
triticale achieved really similar results of around under 50% of accuracy from the test set.

4.3.8 Summary of fungicide model results

Crop name OOB R2 OOB RMSE Test R2 Test RMSE
Winter Soft Wheat 0.468 0.534 0.544 0.527
Winter Rapeseed NA NA NA NA
Beetroot NA NA NA NA
Winter Barley 0.241 0.474 0.350 0.435
Potatoes 0.544 3.743 0.165 6.024
Maize NA NA NA NA

Table 4.7: Results of fungicide models for crops with at least one observed pest or disease

Crop name OOB R2 OOB RMSE Test R2 Test RMSE
Spring Barley 0.226 0.437 0.166 0.477
Sunflower NA NA NA NA
Winter Pea NA NA NA NA
Spring Pea NA NA NA NA
Triticale 0.099 0.530 0.222 0.436
Winter Durum Wheat 0.145 0.734 0.220 0.515

Table 4.8: Results of fungicide models for crops without observed pest or disease

The fungicide model for winter soft wheat achieved an acceptable quality with accuracy
of 46%, 54% for OOB and test respectively. Unfortunately, we was not able to receive a good
result with winter barley nor potatoes. Indeed, the models without the information of pests and
diseases mostly were clearly not fitted well.

4.3.9 Summary of insecticide model results

In particular, the result of insecticide models show that only the winter rapeseed that reached an
adequate quality with 56% on OOB and 60% on the test set. The RMSE of the model is around
0.75 and 0.78 for OOB and train respectively.

Unfortunately, we could not achieve most of the insecticide crop models without the
information pests and diseases. This is due to less control by insecticide on those crop which lead
to insufficient of sample for prediction.
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Crop name OOB R2 OOB RMSE Test R2 Test RMSE
Winter Soft Wheat NA NA NA NA
Winter Rapeseed 0.561 0.750 0.606 0.785
Beetroot NA NA NA NA
Winter Barley NA NA NA NA
Potatoes 0.562 0.532 0.194 0.719
Maize 0.268 0.370 0.164 0.482

Table 4.9: Results of insecticide models for crops with at least one observed pest or disease

4.4 The possible variations of the TFI to the optimum

4.4.1 Individual variations

To assess the need for variations of the pesticide use for individual field x years, we computed
the individual variation to optimum and displayed it for each of the three categories of pesticides
(Fig. 4.23).

Figure 4.23: Winter Soft Wheat IVO

The points that lay below zero indicates that the pesticide application of those field
exceeded the optimal, which mean that the reduction in the pesticide use is possible for them.
Whilst, the points that are above zero indicates that they were using less pesticides than the op-
timal, in this case they could increase their pesticide use to the optimum to achieve higher margins.

Most of the farms in the three groups and for the three pesticide types could have increased
their pesticide use to increase their margins. The use of herbicide by the farms of the first TFI
cluster is a notable exception with a median possible reduction of nearly 1 TFI.
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For winter rapeseed (Fig.4.24), it is the opposite with seemingly possible reductions of herbi-
cides and fungicides in most of the farms of the three groups. An alignment of the groups 1 and
3 with the practices of the group 2 could already provide pesticide reduction for many farms. For
the insecticide there is a strong opposition between the group 2 with a mostly positive IVO and
the group 3 with almost all farms with a negative IVO. The group 1 here seems to be the group
to emulate for insecticide use.

Figure 4.24: Winter Rapeseed IVO

4.4.2 General variations to the optimum (GVO)

Summarizing the IVOs for all the fields and years with a given crop allows us to estimate the
general percentage of the variation to the optimum for the three types of pesticides. The farmers
could increase the TFI of winter soft wheat by 12%, while it is possible to decrease the TFI for
rapeseed by 55%.

Summary of the GVO for different crops

Crop name GVO

Winter Soft Wheat + 12%
Winter Rapeseed - 55%
Winter Durum Wheat - 35%
Triticale + 33%
Winter Barley - 46%
Spring Barley - 26%
Winter Pea + 46%
Spring Pea - 17%

Table 4.10: Results of GVO for different crops

The GVO was computed for different crop independently based on the optimal margin esti-
mated from given crop yield models.
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Discussion

With the model of crop yields, it is possible to estimate the optimal margin accounting for a
potential productivity loss associated with a reduction in the pesticide use. It allows us to identify
the farms that could increase or decrease their use of the pesticide. Apparently, the control practice
models allow us to estimate the sustainable TFI of the farms based on its production situation in
regard to the practice of Dephy network. The GLM-Lasso approach allows us to better understand
the covariance of the impact of the variables that related to the target. Although the performance
is in general significantly lower than the Random Forest. The model with Random Forest offers
reasonably good accuracy both for yield and pesticide use. The weather, soil, control practices and
the presence of pests and diseases allow us to make a reliable link to the yield, making useless the
geographical information. This production situation together with the combination of the group
of the farm clustered by their similar practice make it possible to achieve a good modeling of the
control practice by year for several crops and pesticide types.

5.1 The use of pesticide

The analysis of pesticide use in the Dephy network shows that potatoes has an enormous variation
among all the crops for fungicide. This is due to the late blight, which is the most common potato
disease caused by the presence of Phytophthora infestans [Pacilly 2016]. As a result, farmers have
relied heavily on periodic application of fungicide products [Fry 1978, Haverkort 2009]. The winter
soft wheat is the second crop with most use of fungicide product. The presence of the Septoria
tritici blotch (Zymoseptoria tritici), tan spot (Pyrenophora tritici-repentis), and stagonospora
nodorum blotch (Parastagonospora nodorum) has been recognized as common diseases of winter
soft wheat, as indicated in [Jalli 2020] the fungicide is quite a good control over these diseases.
[Byamukama 2019] also indicated that a large amount of accumulated rainfall from May to
June will also likely increase the chances of achieving higher yields by applying fungicide products.

Conversely, insecticides are rarely used on most of the crops. The crop with the highest TFI
for insecticides is the winter rapeseed. The insecticides used on rapeseed are recognized to be
necessary in controlling many pests and diseases such as Pollen beetle (Meligethes aeneus), Stem
weevil etc. The use of these insecticide products on winter rapeseed has been used at a visible
level as mentioned in [Milovanović 2013]. Eventually, it is obvious that the insecticide was not so
much used for most of crop controls.

It is quite interesting that the herbicide has always been used to control the plant on most
crops. The farmers tend to have control over potatoes and beetroots more than other crops.
As mentioned in [Henderson 1995] herbicides play an important role in weed control in beetroot
production. Herbicides are generally used in integrated field management programs to decrease
the potential losses caused by weeds. [Eberlein 1994] stated that herbicides can also reduce the
number of cultivation required and improve the control on weed. Indeed, it is clear that the
herbicides are useful in controlling pests and diseases on most crops.
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5.2 Correlation of the yield and control practice

This study illustrate that the correlation between the yield and pesticide use is essentially
positive. This suggests that the more farmers use the pesticide product, the more likely they are
to increase their yield. This is contrary to the previous study by [Lechenet 2017] which found
the negative correlation between yield and pesticide use which indicates possibility of reducing
the pesticide use while preserving or even increasing the productivity. This could be a reason
from using the combination of the different crops together in one model, whereas in our study we
aim to model the crops independently. Another reason is that we study on the farms that are
part of the Dephy network. Thus, the farms were already in a situation where the amount of the
pesticide use was reduced to a considerable level.

We still have limitation in the quality of the data to make the approximation. The study was
not taking into account other practices such as crop rotation, sowing date, tiling, etc. Moreover,
we were not able to conduct the study on all the farms in France since the data of the overall
France regions were not available. We were therefore only able to use the Dephy network which
is part of France to make the hypothesis. In particular, the study of all farms in France would be
an additional step forward.

5.3 Important determinants

We attempt to remove other variables or make another combination of several complementary
models on winter soft wheat to see the variation of performance. after all, the results show
that all of the variables are important in explaining the yield and control practice, except the
geographical. The models perform equally well with and without the geographical information.
The Lasso technique was used to see the variation of each complementary model. Eventually, the
geographical variables had no impact on the yield or control practice. In this case, the climate can
be a reliable link to yield as mention in [Zhang 2016]. The climate are important determinants
that could already well characterized the yield without the need for the geographical of the field.
The study of Devaud et al, also stated that the meteorology and soil have a reliable relationship
with yield.

This could be due to the fact that location that we used was the center of spatial polygon.
Latitude and Longitude may be possible to take part in explaining the yield. Unfortunately, there
is a limitation in the data set that the Latitude and Longitude were not available for further
experiment.

5.4 The presence of pests and diseases

Another experimental method that we applied was to increase the number of pests to see if they
had an impact on yield. the results suggest that increase the number of pests and diseases it leads
to a significant decrease in yield as a consequence. The Lasso allow us to see that certain pests
and diseases have a visible influence on the yield. [Donatelli 2017] suggests that the substantially
fault prediction of the production could be caused by the lack of awareness of the interaction
from the pests and diseases. Apparently, the result from our study show that some crop may
have a strong influence from the pests and diseases while in certain crop there is no relationship
at all. On the other hand, the presence of pests and diseases seems to have less impact when
combined with other factor such as climate and soil. This could be a very well explained reason
for the primacy of climate and soil.



5.5. The impact of pests and TFI on yield 41

In particular, there was a lack of information on pests and diseases for some crops. The
limitation of these pests could limit the model predictive ability, as there were not enough pests
to explain the application of pesticides in the field.

5.5 The impact of pests and TFI on yield

Based on the results from our study show that the pests and diseases have a significant negative
impact on the yield. This suggests that the presence of the pests would likely decrease the
amount of yield. In addition, when we account for the TFI in the absence of the pests, the TFI
in that case has no impact, only the fungicide on the winter soft wheat and winter barley would
have a high positive coefficient. That is because wheat and barley are pesticide deficient, so it
is always good to use some, unlike on rapeseed. It is reasonable to assume that if pests are not
taken into account, the pesticide will probably have no impact. This is because the pesticide is
normally used against pests and diseases. We also can see that the pesticides have a high impact
when the pests are accounted for.

Moreover, When the weather conditions in the field are taken into account, the impact of the
pests seem to increase as other pests begin to have impact on yield which shows that the climate
parameter also have an influence on the presence of pests. In general, the weather has more effect
than the pests itself. The weather can favor the presence of the pests. We believe that there
are three ways that the weather can effect the pests. The indirect effect of the weather have
over the presence of the pests. The direct effect on the farmers which they apply the pesticide
correspond to the weather. Another direct effect with the farmers is that the weather sometime
could interrupt them to go out and apply the pesticide on the field, especially in case of heavy rain.

Furthermore, In the article [Devaud 2019] found negative impact of Septoria leaf blotch,
yellow rust, aphid and a small impact with slug on the winter soft wheat. Whereas, our study
shows the same impact with those pests, except we did not see the impact of slug, instead we see
brown rush when there are only the pests themselves, and a high negative impact on take-all,
and gall midges when we take into account the weather conditions. Meanwhile, for the winter
rapeseed, we are able to see similar impact with Rape weevil, Cabbage seed weevil, Cabbage
aphid. On the other hand, the article revealed a very significant negative impact of the green
peach aphid, whereas in our study it had no impact at all. [Lechenet 2017] found a high negative
impact of the TFI, whereas in our study we see a high positive impact on most of the crops when
accounting for the pests with or without the weather. It is really hard to say that pesticides are
useless or useful when we do not really know what the pests are.

Our limitation is that the estimate of pests is not as precise as the TFI estimation. First we
don’t have the precise location of the fields that would allow to better estimate the pest and disease
pressure. Getting those real geo-localized field data is a legal issue as it is personal information. An
even better solution would be to have local estimates of pest pressure. This requires the gathering
of much more information and is a major investment that could be achieved in the future by the
use of automated recording devices (IoT).

5.6 The impact of the farm group

The practice model picked up a really high impact from the TFI cluster which explain a huge
variation of TFI. However we do not know exactly what could be the reason that the farmer use
less or high pesticide in this case. That could probably be the different in the weather or the
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presence of the pests and diseases on the field. The global quantity of the pest in the plot is
important, still it is not clear what will make the farmer apply more pesticide than another.

5.7 The optimal TFI

The model allow us to estimate margin of the productivity. Thus, it is possible to compute the
optimal TFI for individual field based on the estimated margin. By comparing between the
optimal TFI to the observe pesticide use in the field, it would be possible to tell the farmer
whether they should increase or decrease the use of the pesticide to the optimum in order to
improve their productivity. Moreover, the overall variation of the field from the optimum would
allow us to approximate the total percentage variation from the optimum.

The previous study on [DU RAPPORT 2010] indicated that we could reduce the TFI by 28%
for wheat and by 31% for rapeseed. However, from our study suggests that the farmers could
increase the TFI for winter soft wheat by 12%, while it is possible to reduce the TFI on rapeseed
by 55%. We could not determine whether the results are reasonable. Since it is not clear if there
is an error in the way we estimated. The investigation on this matter could be another step forward.

5.8 Model consideration

We were able to model the yield for 12 different grain crops. However, the quality of certain
crops such as winter rapeseed, potatoes, winter pea, and sunflower did not give a satisfactory
result, which could be due to the fact that the sample is less than that of the other crop. The
lack of information on the presence of pests and diseases also one of another reason. Moreover,
the missing information on crop rotation, sowing dates and landscape would also be the cause.
Further improvement could be made by taking into account all those other practice parameters
into the models. Nevertheless, the modelling of the control practice for certain crop pesticides
were not achieved. This is due to the fact that some pesticide are rarely applied on those crops.
The application of those pesticides on the field are mostly zero which make it impossible to make
the prediction.

On the other hand, despite the development of practice models, the performance on some
pesticides were still not acceptable. This could be our limitation of having less information of
pests and diseases which resulted in poor quality models. Since the pesticide was applied to
prevent some kind of diseases, in that case we do not have the information of those pests to
explain the variation of the pesticides.
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Conclusion

This study emphasizes that weather information, soil and control practice are key determinants
of achievable yield. Accounting for the presence of several pests and diseases also mattered in
the modeling of the crop yield. At the same time, the weather, soil, presence of diseases, and
the group of farms grouped by their control practices often provide a good approximation of the
amount of pesticide use. As a matter of fact, the geographical information did not improve the
predictive power of the models. We believe that the interaction study of various components such
as landscape, tiling, sowing date and crop rotation may play a vital role in further improving
the prediction of the yield and the control practice. Most importantly, including these aspects of
the cropping system in the models would allow to examine the possibilities their offer to reduce
the use of pesticides as several authors have pointed out difficulties to reduce the pesticide use
without changing the system.

Finally, the underlying objective of this study was to contribute to the management of pest
control preventing marginal loss at the level of France. This does seem possible for some crops in
the Dephy farms. The estimation of the variation of the TFI to optimum in this study allows us to
perceive the potential of the reduction in pesticide while also preserving the loss in productivity.
As Dephy farms use less pesticide than other French farms, we could at least contribute to promote
a similar reduction in the use of pesticides by promoting the pesticide models of the most margin
efficient groups for other farms inside and outside of the DEPHY network. In this effect, we would
need to switch to dynamic suggestions and not just a posterior evaluation.
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Appendix

A.1 Crop name in French and English

Crop Name in French Crop Name in English
Blé tendre d’hiver Winter Soft Wheat
Blé dur d’hiver Winter Durum Wheat
Colza d’hiver Winter Rapeseed
Betterave Beetroot
Orge d’hiver Winter Barley
Orge de printemps Spring Barley
Pois d’hiver Winter Pea
Pois de printemps Spring Pea
Pomme de terre Potato
Triticale Triticale
Tournesol Sunflower
Maïs Maize

Table A.1: Crop name in French and English
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A.2 General Analysis

The histogram illustrate the general analysis of our sample data set of the fields in France
between 2010 to 2019.

Figure A.1: The distribution of farms from 2010 to 2019

The figure.A.2 represent the number of crop plots from the year of 2010 until 2019. It show
how the number of crop field change from one year to another in total 9 years. Since the data set
was received in 2019. Thus, the year 2019 was not complete. That is the reason why we only had
small number of plots in 2019.
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Figure A.2: The number of plots between the year of 2010 to 2019
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A.2.1 The distribution of TFI in twelve grain crops

Figure A.3: TFI fungicide use in twelve type of grain crop from 2010 to 2019

In figure.A.3 show the level of TFI fungicide used on the twelve crop field. The y-axis which
show the number of the plot that using the fungicide, while the x-axis show the amount of TFI
fungicide that they applied. It is clear that the most fungicide product was used on winter soft
wheat, and potato. Whilst, they seem to use less fungicide in other crop field.
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Figure A.4: TFI insecticide use in twelve type of grain crop from 2010 to 2019

The farmers seem to use less insecticide for all type of these grain crop. At the same time,
the one that has the highest TFI use for insecticide is winter rapeseed.
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Figure A.5: TFI herbicide use in twelve type of grain crop from 2010 to 2019

It is quite obvious that the herbicide has been used the most on all type of crops. The
herbicide may also boost their productivity.

A.2.2 The change in the level of pesticide use

The boxplot illustrate how the level of the TFI use correspond to different type of pesticide and
crop has changed over the years from 2010 to 2019. In this part, we show only the winter soft
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wheat as it has the highest number of field.

Figure A.6: The change in fungicide TFI in winter soft wheat from 2010 to 2019

Figure A.7: The change in insecticide TFI in winter soft wheat from 2010 to 2019
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Figure A.8: The change in herbicide TFI in winter soft wheat from 2010 to 2019

Parameters Description

departement identify the department of the field
domaine_code identify the farm
domaine_id identify the year of the farm
domaine_campagne year of harvest
parcelle_id identify the plot
culture_id identify the crop
intrant_phyto_type describe the type of pesticides
dose the applied dose of the pesticide product
ref_dose the reference dose of the pesticide product
proportion_surface proportion surface of the plot
surface surface of the plot
TFI the level of pesticide use in the plot
TFI_department the level of pesticide use in the department
rendement_moyen (yield) the yield of the plot
yield_department the yield of the department

Table A.2: the data of control practice on field, farm and department level
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A.3 Pest Effect on Yield

Figure A.9: Pest effect on yield (winter soft wheat)

Figure A.10: Pest effect on yield accounting for TFI (winter soft wheat)
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Figure A.11: Pest effect on yield accounting climate (winter soft wheat)
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Figure A.12: Pest effect on yield accounting for TFI and climate (winter soft wheat)
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Figure A.13: TFI effect on yield in the absence of pest (winter soft wheat)

Figure A.14: Pest effect on yield (winter rapeseed)
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Figure A.15: Pest effect on yield accounting for climate (winter rapeseed)

Figure A.16: Pest effect on yield accounting for TFI (winter rapeseed)
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Figure A.17: Pest effect on yield accounting for TFI and climate (winter rapeseed)
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