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Resumen 

 
 

Los cambios de estado fenológico de las plantas son importantes indicadores en la                         
investigación agronómica. Sin embargo, la dificultad para la recolección de datos                     
fenológicos a gran escala es un desafío actual. La utilización en conjunto de información                           
espectral proveniente de imágenes satelitales y datos meteorológicos preprocesados, se                   
perfila como una solución a tal desafío.   
 
Por lo tanto, el principal objetivo de este trabajo es ajustar y evaluar diferentes modelos                             
para predecir las fases fenológicas con la utilización de datos satelitales y productos                         
meteorológicos. Para ello, se construyó un conjunto de datos para 8 estados fenológicos                         
recolectados a partir de la base de datos ​Vigicultures® durante la campaña agrícola                         
2017 para parcelas de colza distribuidas en toda Francia. Ajustamos los modelos                       
estadísticos utilizando los métodos de ​Machine Learning más utilizados para clasificar                     
información categórica, como ​Lasso-Multinomial​, ​Random Forest (RF) y ​KNN​. La calidad                     
de los modelos fue estimada usando sus matrices de confusión y su ​accuracy ​global. Los                             
resultados obtenidos mostraron un potencial variable para acoplar los índices derivados                     
de los productos de la teledetección con las variables meteorológicas. La aplicación de                         
ambas fuentes de datos nos permite clasificar los estados fenológicos con una ​accuracy                         
de 0.84 en el mejor modelo encontrado. Encontramos que una buena predicción de los                           
estados fenológicos intermedios está relacionada principalmente con los datos                 
meteorológicos, mientras que para los estados primaverales (floración), hay una fuerte                     
importancia de índices espectrales como el ​NDYI​. El hecho de tener en cuenta las                           
variables espacio-temporales sólo mejora marginalmente el modelo de referencia. La                   
diversidad de las fuentes de información es más importante que el preprocesamiento de                         
la información antes de proporcionarla al modelo de ​RF​. Aunque el modelo de                         
referencia no tiene por objeto sustituir las observaciones in situ, puede ayudar en el                           
proceso de toma de decisiones. 
 
 
 

 
Palabras claves: ​Fenología, aprendizaje automático, clasificación, bosque aleatorio,               
Brassica napus, Copernicus, Sentinel-2, Modelización de cultivos, Cambio climático. 
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Abstract 
 
Changes in the phenological state of plants are important indicators in agronomic                       
research. However, the difficulty of collecting phenological data on a large scale is a                           
current challenge. The joint use of spectral information from satellite images and                       
pre-processed meteorological data appears to be a response to this challenge.   
 
Therefore, the main objective of this work is to adjust and evaluate different models to                             
predict phenological phases using satellite data and meteorological products. A dataset                     
for 8 phenophases collected in the ​Vigicultures® database during the 2017 agricultural                       
season has been built for rapeseed plots spread over the whole French territory. We                           
fitted the statistical models using the most commonly used ​Machine Learning (ML)                       
methods to classify categorical information, such as ​Lasso-Multinomial, Random Forest                   
(RF) ​and ​KNN​. The quality of the models was estimated using their confusion matrices                           
and overall ​accuracy​. The results obtained showed a variable potential for coupling                       
indices derived from remote sensing products with meteorological variables. Crop                   
stages are estimated with these models using several data sources: Sentinel 2 spectral                         
data, meteorological data (Météo-France's SAFRAN model) and space-time data. With                   
the reference model using meteorological and spectral data, we obtained an ​accuracy of                         
0.84 with almost only inversions between neighboring stages. We have studied the                       
impact of modifications of this model as well as the impact of different variables on the                               
quality of the prediction. We found that good prediction of intermediate phenological                       
stages is mainly related to meteorological data, while for spring states (flowering) there                         
is a strong importance of spectral indices such as NDYI. Taking into account                         
spatio-temporal variables only marginally improves the reference model. The diversity                   
of information sources is more important than preprocessing before providing it to the                         
Random Forest model. Although the reference model is not intended to replace in-situ                         
observations, it can assist in the decision-making process. 
 
Keywords​: Phenology, Machine learning, classification, Random Forest, rapeseed,               
Canola 
Brassica napus, Copernicus, sentinel-2, Crop modeling, Climate change. 
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Introduction 
 
Contexto General 
 
Anualmente, el CNES (Centro Nacional de Estudios Espaciales) realiza una                   
convocatoria de propuestas de investigación a los laboratorios espaciales para el                     
desarrollo de temáticas derivadas de la observación remota de superficies terrestres. El                       
proyecto TOSCA-PARCELLE es el resultado de una de esas convocatorias en las que el                           
uso de imágenes satelitales es el insumo principal. Dicho proyecto busca fomentar los                         
esfuerzos para aunar y capitalizar la cadena de tratamiento de ​iota2 ​(Infrastructure pour                         
l'Occupation des sols par Traitement Automatique).  
 
Originalmente, ​iota2 fue diseñado como un flujo de trabajo de clasificación para la                         
cartografía de la cubierta terrestre a gran escala, sin embargo la versatilidad del                         
algoritmo también permite realizar extracciones de información espectral en toda                   
Francia al nivel de escala de la parcela agrícola, función de gran importancia para el                             
desarrollo de este trabajo.  
 
El uso de la información espectral extraída a partir de la utilización de ​Iota2 permite que                               
el Centro Nacional de Investigación en Agricultura y Medio Ambiente (INRAE) y el                         
Instituto de Ciencias e Industrias de la Vida y del Medio Ambiente AgroparisTech                         
co-construyan junto a los agricultores el futuro de una agricultura más sostenible. 
 
Dentro de la Unidad Mixta de Investigación (UMR) en agronomía, el equipo de                         
investigación crea herramientas que ayudan a la toma de decisiones. Las herramientas                       
diseñadas, buscan mejorar el control biológico de bioagresores para disminuir el uso de                         
productos fitosanitarios.  
 
Es en este contexto que se inscribe esta pasantía, en donde se busca establecer un                             
modelo de clasificación de las etapas fenológicas de los cultivos de gran interés                         
agroalimentario. Lo anterior permite comprender cómo la presencia de bioagresores en                     
determinadas etapas del desarrollo vegetal puede afectar el rendimiento final de las                       
cosechas. 

El seguimiento de las diferentes etapas del desarrollo de los cultivos se denomina                         
Fenología ​(Beurs et Henebry 2005)​. La Fenología ha sido abordada científicamente                     
desde diferentes escalas espaciales. Al nivel de la parcela, existen metodologías in situ                         
que permiten determinar los estados fenológicos exactos de los cultivos ​(van Vliet et al.                           
2003)​. A escala local, el uso de vectores aéreos (UAV) equipados con instrumentos de                           
medición (cámaras espectrales), permite analizar la vegetación a mayor escala sin                     
comprometer la precisión de la información que alimenta los modelos ​(Berra, Gaulton,                       
et Barr 2019)​. A escala regional y mundial, el uso de instrumentos de observación remota                             
facilita el análisis de grandes zonas (bosques y campos) para determinar las tendencias y                           
las respuestas de los cultivos a diferentes variables como el cambio climático, la calidad                           
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del suelo, la presencia de estrés, entre otras ​(Heumann et al. 2007; Han et al. 2018; Brown                                 
et al. 2008)​. 

Análisis Fenológico en Agricultura 

En la agricultura, el análisis remoto del ciclo fenológico de los cultivos es una                           
herramienta clave para, entre otras cosas, determinar el rendimiento y la respuesta de                         
los campos a las variables externas, en particular a la presión de plagas y enfermedades                             
de los cultivos. La incursión de la teledetección en la agricultura ha permitido                         
considerar efectos específicos extrapolados a realidades más grandes con una menor                     
inversión de recursos ​(X. Zhang, Friedl, et Schaaf 2009; Wardlow et Egbert 2008)​. El                           
estudio de la fenología de las plantas mediante la observación remota ha sido                         
ampliamente discutido en la literatura, ya que el lanzamiento de satélites equipados con                         
sensores capaces de explotar la energía reflejada en las superficies terrestres ha                       
permitido analizar el comportamiento de la vegetación ya sea en base a su clorofila,                           
estructura o capacidad de retención de agua para deducir su estado fenológico ​(X.                         
Zhang, Friedl, et Schaaf 2009)​. 

Teledetección y Fenología 

Sensores como MODIS a bordo de los satélites estadounidenses ​Acqua y Terra se han                           
utilizado ampliamente para este fin ​(Fisher et Mustard 2007; Ahl et al. 2006)​. Sin                           
embargo, en la actualidad es la misión Europea ​Sentinel​, con su familia de satélites y las                               
mejoras de los instrumentos, la que proporciona imágenes satelitales de alta resolución                       
espacial y temporal ​(Jönsson et al. 2018; Vrieling et al. 2018)​. Desde la perspectiva de la                               
teledetección, la estimación convencional de las mediciones fenológicas suele hacerse a                     
partir de series temporales. Esta estimación suele tener tres pasos fundamentales: 1)                       
limpieza de los datos y presentación de informes; 2) suavización de los datos y                           
reconstrucción de los datos de las series temporales; y 3) extracción de las mediciones                           
fenológicas generadas a partir de los datos de las series temporales reconstruidas ​(Zeng                         
et al. 2020)​ . 

Machine Learning​ y Fenología 

Existen también otros enfoques basados en la complementariedad ("acoplamiento")                 
entre diferentes tipos de datos ​(Almeida et al. 2014)​. Estos enfoques pueden establecer                         
modelos de predicción de las diferentes etapas de un fenómeno utilizando instrumentos                       
de inteligencia artificial como el M​achine Learning (ML) de cual es parte el Aprendizaje                           
Profundo para identificar patrones ​(Czernecki, Nowosad, et Jabłońska 2018)​. 

En el marco de esta pasantía, analizaremos el aporte de la información espectral,                         
climatológica y espacio-temporal para la predicción de los estados fenológicos de                     
cultivos de importancia agroecológica. Abordaremos dicha pregunta de investigación                 
utilizando herramientas de clasificación con métodos de M​achine Learning​.                 
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Determinaremos los cambios de cada etapa fenológica de una campaña agrícola de colza                         
en parcelas distribuidas por toda Francia. 

Inicialmente realizaremos la extracción de la información espectral de las 10 bandas de                         
Sentinel-2, se calcularán los índices espectrales y se evaluará su potencial de                       
clasificación en el estado de floración, posteriormente se acoplarán datos                   
meteorológicos a la información espectral y finalmente se hará uso de métodos de                         
Machine Learning como la regresión logística penalizada multinomial (LASSO), el ​K-                     
Nearest Neighbors (KNN) y ​Random Forest (RF) para determinar el aporte de las variables                           
temáticas a la determinación de patrones en los datos. 
 
En este caso de aplicación, el uso de métodos de ​Machine Learning​, nos permitirá                           
conocer el aporte de la teledetección a la gestión sostenible de los bioagresores en                           
cultivos de gran importancia agroalimentaria determinando la combinación adecuada                 
de variables para la clasificación de estados fenológicos del Colza (​Brassica napus L.​).  
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1. Materiales y Métodos  
 
La metodología se divide en 3 pasos. La primera sección describe las bases de datos                             
utilizadas para la recuperación de la información utilizada. Presenta también, las                     
regiones en donde se encuentran las parcelas. La segunda sección presenta los tres                         
métodos de clasificación utilizados para la detección de los estados fenológicos. En la                         
tercera parte se detalla la metodología utilizada para definir el aporte de los diferentes                           
conjuntos de variables.  
 
1.1. Materiales 
 

1.1.1. Datos Agronómicos 
 

Vigicultures® 

Aplicación departamental de introducción de datos epidemiológicos para cultivos de                   
campo (colza, trigo, girasol, etc.) implementada por institutos técnicos (Arvalis, Terre                     
Inovia, ITB) ​(Simonneau, Chollet, et Gouwier 2013)​. ​Vigicultures® junto con la base de                         
datos ​VégéObs ​reúne datos de vigilancia epidemiológica para obtener información en                     
tiempo real sobre la presión de las plagas en los cultivos. ​Esta base de datos orquestada                                
por el ministerio de agricultura y el ministerio del medio ambiente es una herramienta                           
clave de prevención y análisis de riesgos para la creación de Boletines Fitosanitarios                         
(BSV). Para nuestro caso de estudio, utilizamos los estados fenológicos de los cultivos                         
que son registrados cada vez que una observación de plagas es realizada.   

 

Estados fenológicos 

El estado fenológico de las parcelas es establecido a partir de una clasificación propia,                           
establecida en la base de datos ​Vigicultures®. ​Para el cultivo de colza se identificaron 28                             
estados fenológicos (Semis, A, B1, B2, B3, B4, B5, B6, B7, B8, B9, B10, "> 10 feuilles", C1,                                   
C2, D1, D2, E, F1, F2, G1, G2, G3, G4 - Floraison toujours en cours, Fin floraison, G4 -                                     
Floraison terminée, G5 et Hors culture). Los estados “G4 - Floraison Terminée” y “Hors                           
de Culture” fueron descartados debido a su ambigüedad y su reducido número de                         
observaciones. 

A continuación se hace un paralelo de los estados ​Vigicultures® con la escala ​BBCH                           
(Biologische Bundesanstalt, Bundessortenamt und CHemische Industrie). La escala               
BBCH describe las etapas fenológicas de los cultivos utilizando criterios que relacionan                       
la etapa de crecimiento con un código decimal ​(Meier 2001)​. El primer dígito indica la                             
etapa principal de desarrollo (por ejemplo, 6 = floración), mientras que el segundo dígito                           
se refiere a una etapa secundaria de crecimiento o al porcentaje de plantas en esa etapa. 
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Predicción estadística de las etapas fenológicas del colza (​Brassica Napus L​) a partir 
de datos meteorológicos y observaciones satelitales 

Tabla 1. Paralelo entre la escala ​Vigicultures®​ y la escala ​BBCH 

Escala ​Vigicultures® 
original 

Escala 
Vigicultures® 
Agrupada 

Escala  
BBCH ​(Meier 2001) 

Semis, A  A  fase 0:​ Germinación, brotación, desarrollo de la yema. 

B1, B2, B3, B4, B5, B6  B1 -B6  fase 1:​ Desarrollo de las hojas (tallo principal). 

B7, B8, B9, B10, 
 > 10 feuilles 

B7 - B10>  fase 2:​ Formación de brotes laterales / (ahijamiento). 

C1, C2  C  fase 3: Crecimiento longitudinal del tallo o crecimiento               
en roseta, desarrollo de brotes (retoños)/ encañado (tallo               
principal). 

D1, D2  D  fase 4: Desarrollo de las partes vegetativas cosechables de                 
la planta o de órganos vegetativos de propagación /                 
embuchamiento. 

E  E  fase 5:​ Emergencia de la inflorescencia (tallo principal). 

F1, F2, G1, G2, G3, G4 - 
Floraison toujours en 
cours, G4 - Floraison 
terminée, G5 

F-G 
 

fase 6:​ Floración (tallo principal). 

fase 7:​ Desarrollo del fruto. 

fase 8:​ Coloración o maduración de frutos y semillas. 

NA  NA  fase 9:​ Senescencia. 

  

Registre Parcellaire Graphique (RPG) )  

Base de datos geográfica que se utiliza como referencia para la evaluación de las ayudas                             
de la Política Agrícola Común (PAC) europea. La versión anónima contiene datos                       
gráficos de parcelas (desde 2015) con su cosecha principal. Estos datos han sido                         
producidos por el Organismo de Servicios y Pagos (SPA) desde 2007. La reutilización del                           
RPG es gratuita para todos los usos, incluidos los comerciales, según los términos de la                             
"licencia abierta" . 1

1 https://www.data.gouv.fr/ 
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Predicción estadística de las etapas fenológicas del colza (​Brassica Napus L​) a partir 
de datos meteorológicos y observaciones satelitales 

Identificación de las parcelas de interés 

 
Fig 1. Diagrama general de preprocesamiento de las bases de datos agronómicas 
 

 
Fig 2. Mapa de las parcelas de interés en Francia 

 
Elvia Julieth Arellano Ortiz       12 



 
 

Predicción estadística de las etapas fenológicas del colza (​Brassica Napus L​) a partir 
de datos meteorológicos y observaciones satelitales 

De la base de datos ​Vigicultures® es extraída la información de parámetros agrícolas                         
(tipo de cultivo, estado fenológico observado, departamento, etc) relacionados a un                     
punto GPS, esa información es fusionada con la información relacionada a la parcela                         
registrada en la base de données RPG. Los polígonos resultantes demarcan las regiones                         
de interés (ROI) para el posterior análisis con las imágenes satelitales y las variables                           
climatológicas. 

 
1.1.2. Datos Espectrales 

Sentinel-2 

El conjunto de satélites ópticos Sentinel-2 (2A et 2B) hace parte de la familia de satélites                               
del proyecto espacial europeo para la observación remota de la tierra. Desde junio de                           
2015, las imágenes multiespectrales permiten analizar el ciclo de desarrollo y                     
crecimiento de las plantas a una escala mundial. Con 13 bandas espectrales a una alta                             
resolución espacial (4 bandas a 10m, 6 bandas a 20m et 3 bandas a 60m) y un tiempo de                                     
revisita de 5 días, su aplicación en agricultura es de las más documentadas (​Zhang,                           
Friedl, et Schaaf 2009)​. 

Transformación de la Información Espectral 

 
Fig 3. Diagrama general de preprocesamiento de la información espectral Sentinel-2 
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Predicción estadística de las etapas fenológicas del colza (​Brassica Napus L​) a partir 
de datos meteorológicos y observaciones satelitales 

 
La información espectral es obtenida a partir de dos metodologías distintas. En ambas                         
metodologías, las tiles Sentinel-2 de Nivel 2A fueron descargadas del Theia Centro de                         2

datos terrestres ​(Hagolle [2016] 2020)​. Las adquisiciones corresponden a la campaña de                       
cosecha de 2017 (entre 1 de Julio de 2016 y 25 de agosto 2017).  
 
En la primera metodología, la extracción de datos espectrales se realizó utilizando ​iota2                         
(Inglada et al. 2016) ​y MAJA ​(MACCS -ATCOR Joint Algorithm) desarrollada por el                       3 4

Centre National d'Etudes Spatiales (CNES) y el Centre d'Etudes Spatiales de la                       
Biosphère (CESBIO), por un lado, y el Centro Aeroespacial Alemán (DLR), por otro. Las                           
imágenes son ortorectificadas, corregidas atmosféricamente sin nubes y con detección                   
de sombras ​(Baetens, Desjardins, et Hagolle 2019)​. Todas las adquisiciones fueron                     
re-muestreadas para rellenar los espacios dejados por las nubes y las sombras (cada 10                           
días, comenzando en 2016-07-01 y terminando en 2017-08-25). Las 10 bandas de S2 (B2,                           
B3, B4, B5, B6, B7,B8, B8A, B11 et B12) son recuperadas a una resolución espacial de 10 y                                   
20 metros sin proceso de resampling.  
 
En la segunda metodología, las adquisiciones fueron realizadas a partir de la                       
herramienta ​SEN2COR ​(Muller-Wilm 2012)​. Las 10 bandas se presentan en dos formas:                       
una forma, Reflectancia de Superficie corregida por efectos atmosféricos y ambientales                     
(SRE_Bx.tif), otra forma, Reflectancia Plana que es adicionalmente corregida por efectos                     
de pendiente (FRE_Bx.tif) . Trabajaremos con los datos S2 L2A usando el producto                       5

FRE_Bx.tif. Las bandas fueron extraídas en su resolución original siendo después                     
transformadas todas a 10 metros utilizando como parámetro para definir el nuevo valor                         
de los píxeles, el método de Nearest Neighbor​. 

En ambos casos, las parcelas de interés recuperadas de acuerdo con las bases de datos                             
agronómicas se asocian a la información espectral de las tiles relacionadas a su                         
localización geográfica. Las imágenes satelitales son seleccionadas a partir de la fecha                       
de observación de los diferentes estados fenológicos. Esta selección busca que la                       
diferencia entre la fecha de observación del estado y la fecha de la información espectral                             
sea entre 0 y 5 días antes de la observación in-situ. 

Índices Espectrales 

Las bandas espectrales fueron utilizadas para obtener los índices espectrales que se                       
consideraron pertinentes para el análisis de los estados fenológicos en agricultura. En                       
las siguientes tablas presentamos las bandas espectrales y los índices utilizados en este                         
caso de estudio. 

2 ​https://theia.cnes.fr 
3 Multi-sensor Atmospheric Correction and Cloud Screening software (MACCS) 
 
4 Atmospheric Correction software (ATCOR) 
 
5 https://labo.obs-mip.fr/multitemp/sentinel-2/theias-sentinel-2-l2a-product-format/ 
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Predicción estadística de las etapas fenológicas del colza (​Brassica Napus L​) a partir 
de datos meteorológicos y observaciones satelitales 

Tabla 2. Bandas Espectrales Sentinel-2 utilizadas 

Nombre  Resolución  Longitud de Onda  Descripción 

B2  10 metros  496.6nm (S2A) / 492.1nm (S2B  Azul 

B3  10 metros  560nm (S2A) / 559nm (S2B)  Verde 

B4  10 metros  664.5nm (S2A) / 665nm (S2B)  Rojo 

B5  10 metros  703.9nm (S2A) / 703.8nm (S2B)  Red Edge 1 

B6  20 metros  740.2nm (S2A) / 739.1nm (S2B)  Red Edge 2 

B7  20 metros  782.5nm (S2A) / 779.7nm (S2B)  Red Edge 3 

B8  20 metros  835.1nm (S2A) / 833nm (S2B)  Infrarrojo Cercano 

B8A  20 metros  864.8nm (S2A) / 864nm (S2B)  Red Edge 4 

B11  20 metros  1613.7nm (S2A) / 1610.4nm (S2B)  SWIR 1 

B12  20 metros  2202.4nm (S2A) / 2185.7nm (S2B)  SWIR 2 

 

Tabla 3. Índices espectrales utilizados y sus fórmulas 

Índices  Fórmula para Sentinel-2  Fuente 

Normalized 
Difference Vegetation 

Index (NDVI) 

DV I  N =  B8 − B4
B8 + B4

 
 

(Rouse et al. 1973) 

Green Normalized 
Difference Vegetation 

Index (GNDVI) 

NDV I  G =  B8−B3
B8 + B3  

 
 

 
(Gitelson, Kaufman, 
et Merzlyak 1996) 

Normalized 
Difference Water 

Index (NDWI) 

 

DWI  N =  B3−B8
B3 + B8  

 

 
(Gao 1996) 

Normalized 
Difference Yellow 

Index (NDYI) 

DY I  N =  B3−B2
B3 + B2  

 
 

 
(Sulik et Long 2016) 
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Predicción estadística de las etapas fenológicas del colza (​Brassica Napus L​) a partir 
de datos meteorológicos y observaciones satelitales 

Normalized 
Difference Moisture 

Index (NDMI) 

DMI  N =  B8A−B11
B8A + B11  

 
 

 

(Sykas 2019) 

Enhanced Vegetation 
Index (EVI)  V I  .5  E = 2  [ B8−B4

B8 + 6B4 − 7.5B2+1]  
 
 

(Liu et Huete 1995) 

Structure Insensitive 
Pigment Index (SIPI)  IP I  S =  B8 −B2

B8 + B4  
(Sykas 2019) 

Soil Adjusted 
Vegetation Index 

(SAVI) 

AV I  S =  B8 −B4
1.428 (B8 + B4 + 0.428)  

(Huete 1988) 

Atmospherically 
Resistant Vegetation 

Index (ARVI) 

RV I  A =  B8 − 2B4 +B2
 B8 + 2B4 + B2  

(Tanre, Holben, et 
Kaufman 1992) 

Advanced Vegetation 
Index (AVI) 

V I  B8 (1 B4) (B8 4)A =  [ *  −  *  − B ]1/3   (Roy, Sharma, et 
Jain 1996) 

Bare Soil Index (BSI)  SI  B =  (B11 + B4) − (B8 + B2)
 (B11 + B4) + (B8 + B2)  

(Sykas 2019) 

Moisture Stress Index 
(MSI)  SI  M =   B8 

B11
 

(Rock, Williams, et 
Vogelmann 1985) 

 

Tasseled Cap 

Además de los índices espectrales mencionados arriba, la información espectral                   
obtenida fue transformada a partir de la metodología de “​Tasseled Cap​”. 

Kauth, R. J. and Thomas, G. S. (1976) idearon una transformación de la información de                             
las bandas espectrales para maximizar la información contenida en nuevos elementos de                       
análisis. Es un método de compresión para reducir múltiples datos espectrales,                     
concretamente de 6 bandas, en tres neo-canales que permiten comprender fenómenos                     
importantes del desarrollo de cultivos en el espacio espectral ​(Kauth et Thomas 1976)​.                         
Los neo-canales obtenidos después de la transformación son los siguientes: 
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Predicción estadística de las etapas fenológicas del colza (​Brassica Napus L​) a partir 
de datos meteorológicos y observaciones satelitales 

Tabla 4. Transformaciones ​Tasseled Cap 

Índices  Fórmula para Sentinel-2  Utilización 

Brightness  6

Index  I   B =  √ 2
B32
B42

  Asociado a las     
variaciones de   
reflectancia del   
suelo. 

Greenness 
(verdor)​: 

Greenness  ​= (-0.2848B2)+(-0.2435B3)+(-0.5436B4) 7

+0.7243B8+0.0840B11+(-0.1800B12) 
 

Correlacionado 
con el vigor de la         
vegetación 

Wetness 
(Humedad) 

Wetness  = 0.1509B2+0.1973B3+0.3279B4 8

+0.3406B8+(-0.7112B11)+(-0.4572B12) 
Influído por las     
bandas en el IR       
medio y tiene     
que ver con la       
humedad vegetal   
y del suelo. 

 

1.1.3. Datos meteorológicos  

AgroClim 

AgroClim es una unidad al servicio de la comunidad del INRAE. Esta unidad gestiona                           
la red agroclimática nacional del INRAE y la base de datos correspondiente. Su función                           
es asegurar la trazabilidad de las observaciones dependientes del clima. AgroClim es                       
también el punto de entrada único para que las unidades del INRAE obtengan datos                           
meteorológicos de Météo-France  . 9

 
Los datos utilizados son producto del modelo de datos climatológicos elaborado por                       
Météo-France, ​SAFRAN ​(Système d’Analyse Fournissant des Renseignements             
Atmosphériques à la Neige). Safran trabaja en regiones de clima homogéneo. Estas                       
regiones tienen una forma irregular, y su superficie es normalmente inferior a 1.000 km².                           
En cada región homogénea, Safran estima la variación de 8 parámetros climáticos (tabla                         
5) para cada clase de altitud de 300 m, sobre la base de todos los datos climáticos                                 
disponibles (estaciones meteorológicas, pero también análisis de modelos de pronóstico                   
meteorológico a gran escala, como el modelo ARPEGE de Météo-France) ​(Lemaire                     
2015)​. Los análisis de temperatura, humedad, velocidad del viento y cobertura de nubes                         
se producen cada 6 horas. El análisis de las precipitaciones se hace diariamente.                         
Después de obtener los valores de las zonas, el análisis se interpola espacialmente en                           
una cuadrícula regular de 8 km x 8 km.  

6 https://foodsecurity-tep.net/S2_BI 
7 https://www.indexdatabase.de/search/?s=tasselled+cap 
8 https://www.indexdatabase.de/search/?s=tasselled+cap 
9 https://www6.paca.inrae.fr/agroclim/ 
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Predicción estadística de las etapas fenológicas del colza (​Brassica Napus L​) a partir 
de datos meteorológicos y observaciones satelitales 

Tabla 5. Données spatialisées par le modèle Safran de Météo - France ​(Lemaire 2015​) 
Données disponibles   Période  Résolution de la maille 

1. Temperaturas mínima, máxima y media a 2 m sobre el 
nivel del suelo (°C) ; 
2. Humedad relativa media a 2 m sobre el suelo (en 
g.kg-1) ; 
3. Fuerza media del viento a 10 m sobre el nivel del 
suelo (en m/s); 4. 
4. Precipitación sólida (en mm) 
5. Precipitación líquida (en mm) 
6. Radiación infrarroja/solar (en J/cm²) 
7. Radiación atmosférica (en J.cm-2) 
8. Evapotranspiración potencial (FTE mm), 
La fórmula de Penman-Monteith 

 
 

1958 
à aujourd’hui 
 

 
 

8 km x 8 km 

 
 

Transformación de la información meteorológica 

 
Fig 4.​ ​Diagrama general de preprocesamiento de las bases de datos meteorológicos 
 
Para este estudio, consideramos todas las variables climatológicas obtenidas por el                     
modelo SAFRAN. Adicionamos otra variable, los grados día de crecimiento acumulados                     
(gdd), la cual está íntimamente relacionada a la evolución fenológica de los cultivos. El                           
cálculo de esta variable basado en la siguiente fórmula: 
 

DD (Tmax Tmin) / 2 Tbase  G =  +  −   
 
Utilizamos la temperatura base de 5° según ​(Morrison, McVETTY, et Shaykewich 1989) 
y la función gdd() del paquete ​pollen , basada en ​(Baskerville et Emin 1969)​. 10

10 ​https://cran.r-project.org/web/packages/pollen/vignettes/gdd.html 
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Predicción estadística de las etapas fenológicas del colza (​Brassica Napus L​) a partir 
de datos meteorológicos y observaciones satelitales 

 
Los datos diarios departamentales de las estaciones meteorológicas más próximas a las                       
parcelas de interés fueron agrupados por semanas. La predicción de los estados se                         
realizó con la información climatológica de las últimas 52 semanas a la fecha de                           
observación in situ. Esta decisión está basada en la hipótesis empírica de que las                           
variaciones de las condiciones meteorológicas durante al menos 10 meses pueden                     
impactar el crecimiento de la planta de la siembra hasta la cosecha. Además, la                           
información meteorológica es un proxy de la información temporal que podría ser útil                         
para identificar si es tiempo de sembrar ya que las variaciones de temperatura, por                           
ejemplo, permiten a un modelo como ​Random Forest​, encontrar oscilaciones en la señal.                         
Si consideramos los desafíos que presenta el cambio climático actual a los procesos de                           
modelización, esta identificación de la temporada tiene una ventaja sobre la fecha de                         
observación pues podemos adaptar la meteorología a un periodo específico del año, esto                         
nos permite ajustar el modelo a otras regiones y otros años. Por otra parte, desde el                               
punto de vista de preprocesamiento de los datos, si extraemos 10 meses para un estado                             
fenológico es congruente hacerlo para todos los otros, para tener el mismo número de                           
variables independientes por clase.  
 

Construcción del juego de datos final 
 

 
Fig 5. Diagrama general para la construcción del juego de datos final 
 
Los datos climatológicos fueron fusionados con la información agronómica y espectral a                       
partir del identificador único de cada parcela de interés. Al final del preprocesamiento                         
se obtuvo el siguiente juego de datos: 
 

Tabla 6. Composición final del juego de datos para las modelizaciones 

Nb de parcelas  Nb de variables  Nb de observaciones 

561  519 
28  espectrales 
491 Climáticas 

3033 
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Predicción estadística de las etapas fenológicas del colza (​Brassica Napus L​) a partir 
de datos meteorológicos y observaciones satelitales 

1.2. Métodos 

1.2.1. Métodos de clasificación utilizados 

Lasso Multinomial (GLM) 
En 1996 Tibshirani elaboró el LASSO (Least Absolute Shrinkage and Selection                     
Operator) que es un método que reduce a cero el coeficiente de regresión de variables                             
menos impactantes. Asociado a una validación cruzada, permite el nivel de impacto                       
adecuado y así, realiza una selección de variables. La idea es que el método LASSO                             
minimiza la suma de los cuadrados residuales para los que la suma de las estimaciones                             
(coeficientes) no es mayor que una cierta constante ​(Efendi et Ramadhan 2018)​. Dicho de                           
otra manera, LASSO restringe la estimación a menos de una cierta constante (en este                           
caso, usamos el lambda1se) de modo que algunas estimaciones son cero.  
 
Para predecir variables categóricas múltiples, la utilización del modelo logit                   
multinomial en el análisis de regresión para las respuestas de múltiples categorías no                         
ordenadas es la más utilizada ​(Tutz, Pößnecker, et Uhlmann 2015)​. 
 
En este caso, utilizamos el paquete ​glmnet para ajustar el modelo de referencia. El                           
modelo permite determinar las variables más importantes en la clasificación de los                       
estados fenológicos.  
 
Multinomial Logistic Regression (MLR) - Redes Neuronales 
 
La regresión multinomial es una extensión de la regresión logística binomial. El                       
algoritmo nos permite predecir una variable dependiente categórica que tiene más de                       
dos niveles ​(Hosmer et Lemeshow 1989)​. Como cualquier otro modelo de regresión, la                         
salida multinomial puede predecirse usando una o más variables independientes. Las                     
variables independientes pueden ser de tipo nominal, ordinal o continua. 
 
El MLR aplica una transformación logarítmica no lineal que permite calcular la                       
probabilidad de aparición de cualquier número de clases de una variable dependiente                       
basándose en variables explicativas. A diferencia de los modelos de regresión lineal que                         
utilizan los mínimos cuadrados como estimador, los coeficientes de la MLR se estiman                         
típicamente utilizando la máxima probabilidad ​(Jeune et al. 2018)​.   
 
Para esta modelización utilizamos el paquete ​nnet para ajustar el modelo multinomial a                         
través de una red neuronal. 

Ordinal Logistic Regression (OLR) 
Uno de los modelos estadísticos más apropiados para el análisis de los datos con una                             
variable de respuesta categórica es el modelo de regresión logística ​(Efendi et Ramadhan                         
2018)​. La regresión logística ordinal es una extensión del modelo de regresión logística                         
simple. En la regresión logística simple, la variable dependiente es categórica y sigue                         
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una distribución de Bernoulli. En la regresión logística ordinal la variable dependiente                       
es ordinal, es decir, hay un ordenamiento explícito en las categorías ​(Ananth et                         
Kleinbaum 1997)​. 
 
El modelo de regresión logística ordinaria tienen en cuenta el orden de la variable                           
dependiente categórica utilizando eventos acumulativos para el cálculo del logaritmo de                     
las probabilidades ​(Ananth et Kleinbaum 1997)​. Esto significa que, a diferencia de la                         
regresión logística simple, los modelos logísticos ordinales consideran la probabilidad                   
de un evento y todos los eventos que están por debajo del evento focal en la jerarquía                                 
ordenada. 
 
En este caso de estudio, una vez ordenada la variable categórica de los estados                           
fenológicos, se usó la regresión logística ordinal para predecir los estados en función de                           
las variables independientes. Esto nos permitirá determinar cuál de nuestras variables                     
independientes (si alguna) tiene un efecto estadísticamente significativo en nuestra                   
variable dependiente. El paquete utilizado en R fue ​ordinal​. 
 
Random Forest (RF) 
 
Los bosques aleatorios son una combinación de árboles de decisión. En este método de                           
clasificación cada árbol depende de los valores de un vector aleatorio muestreado                       
independientemente con la misma distribución para todos los árboles del bosque                     
(Breiman 2001)​. El error de generalización para los bosques converge en un límite a                           
medida que el número de árboles en el bosque se hace grande. El error de generalización                               
de un bosque de clasificadores de árboles depende de la fuerza de los árboles                           
individuales del bosque y de la correlación entre ellos ​(Boulesteix et al. 2012)​. 
 
Random Forest es un algoritmo muy interesante para el manejo de información espectral                         
y el acoplamiento con otras variables (como las climáticas, por ejemplo) ​(Muñoz et al.                           
2018)​. Presenta características como el funcionamiento eficaz con grandes conjuntos de                     
datos, la capacidad de identificar patrones de asociación no lineales entre los                       
predictores y la respuesta, además de manejar variables de predicción altamente                     
correlacionadas ​(Kühnlein et al. 2014)​.  
 
El algoritmo genera una estimación interna no sesgada del error de generalización                       
(error OOB) y tiene la capacidad de determinar qué variables son importantes en la                           
clasificación ​(Breiman 2001)​. 
 
Los paquetes utilizados en R fueron ​RandomForest y ​Caret​. En la clasificación de                         
estados fenológicos, el modelo de ​Random Forest​ fue estimado con ​500 árboles​. 
 
k-Nearest Neighbors (kNN) 
 
El algoritmo de clasificación kNN se ha convertido en un método importante en la                           
minería de datos y el aprendizaje de máquinas desde que fue propuesto en 1967 ​(Deng et                               
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al. 2016)​. Para aplicar el método tradicional de kNN en grandes volúmenes de datos, las                             
metodologías pueden ser a menudo categorizadas en dos partes, es decir, encontrar                       
rápidamente las muestras más cercanas o seleccionar muestras representativas (o la                     
eliminación de algunas muestras) para reducir el cálculo de kNN ​(Zhu, Zhang, et Huang                           
2014)​. 
 
KNN es un algoritmo de clasificación estándar basado exclusivamente en la elección de                         
la métrica de clasificación. Es "no paramétrico". Sólo debe establecerse la k, que es el                             
número de vecinos a partir del cual se establecen las distancias. K es un valor entero                               
especificado por el usuario. La elección óptima del valor depende en gran medida de los                             
datos. En general, un valor mayor suprime los efectos del ruido, pero hace que los                             
límites de la clasificación sean menos claros.  
 
En este caso de estudio, el algoritmo fue utilizado en R a partir del paquete ​Caret ,                               11

determinando como método de control la validación cruzada con 10 folds. 
 

1.2.2. Detección del estado de Floración 
 
A manera de test inicial, se realizó una primera clasificación binaria del estado de                           
floración. Utilizamos un modelo basado en la capacidad predictiva de los índices                       
espectrales. El método utilizado fue ​Random Forest y se ajustó para los estados                         
fenológicos agrupados en 8 clases. 
 

1.2.3. Condiciones de Referencia 
 
El modelo de referencia es construido considerando los estados fenológicos en función                       
de las variables climatológicas y espectrales (Figura 6). El dataset de datos espectrales                         
utilizado es resultado de la cadena de tratamiento iota2 (primera metodología de                       
extracción).  
 
Inicialmente, ajustamos el modelo de referencia a partir de los cuatro métodos de                         
clasificación seleccionados para este caso de estudio (​Lasso Multinomial​, ​Ordinal Logistic                     
Regression​, ​Random Forest y ​K-Nearest Neighbors​). Después, evaluamos los cuatro métodos                     
en función de la precisión y el tiempo de cálculo. Finalmente, seleccionamos el ​Random                           
Forest para clasificar los estados fenológicos agrupados. Los índices fueron las variables                       
espectrales utilizadas. 
 
   

11 ​https://cran.r-project.org/web/packages/caret/caret.pdf 
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Estados  ~ Clima + Espectral 
Donde:  
clima​ =            Temperatura Mínima 

           Temperatura Media 
           Temperatura Máxima 
           Precipitación 
           Evapotranspiracion 
           Velocidad media del viento 
           Radiación Solar 
           Grados día de crecimiento acumulados (gdd) 
           Humedad Relativa 

 
Espectral ​=  Normalized Difference Vegetation Index (NDVI) 

  Normalized Difference Water Index (NDWI) 
    Green Normalized Difference Vegetation Index (GNDVI)  
  Normalized Difference Yellow Index (NDYI) 
  Normalized Difference Moisture Index (NDMI) 

Enhanced Vegetation Index (EVI) 
Advanced Vegetation Index (AVI) 
Soil Adjusted Vegetation Index (SAVI) 
Moisture Stress Index (MSI) 
Bare Soil Index (BSI) 
Atmospherically Resistant Vegetation Index (ARVI) 
Structure Insensitive Pigment Index (SIPI) 

Figure 6.  Modèle de référence 
 
Las condiciones de referencia son establecidas como la línea base para evaluar y/o                         
mejorar la clasificación en función del acoplamiento o no de otras variables temáticas.                         
Esta línea base se establece para testar la variación de una variable a la vez y no todas las                                     
combinaciones de variables.  
 
El problema de investigación está dividido en preguntas específicas que buscan ser                       
resueltas por modificar una variable a la vez a partir de dichas condiciones de                           
referencia. La selección de las condiciones de referencia está fundamentada en la                       
experiencia del equipo de trabajo y en el soporte académico:  
 

✓ El algoritmo Iota2​, es una cadena de procesamiento para la producción operativa                       
de mapas de la cubierta terrestre a partir de series temporales de imágenes de                           
teledetección utilizando una clasificación supervisada ​(Inglada et al. 2016; Fauvel                   
et al. 2020)​. Su versatilidad y nivel de precisión permite utilizarla en contextos                         
diversos. 

✓ La utilización de ​índices espectrales en agricultura ha sido una de las metodologías                         
de análisis de mayor tendencia en las últimas tres décadas ​(Bolton et Friedl 2013)​.                           
En particular, los indices normalizados de vegetacion como el ​NDVI​, han sido                       
fuertemente utilizados dadas sus ventajas de interpretacion al mejorar la                   
discriminación entre el suelo y la vegetación, reduciendo el efecto del relieve en                         
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la caracterización espectral de las diferentes cubiertas ​(Islam et Bala 2008; Bolton                       
et Friedl 2013)​. 

✓ El algoritmo de Random Forest (RF) ​es un método de clasificación con menor                         
sensibilidad a la calidad de las muestras de entrenamiento y al sobreajuste (en                         
comparación a otros métodos). Estas ventajas se deben al gran número de árboles                         
de decisión producidos al seleccionar aleatoriamente un subconjunto de                 
muestras de entrenamiento ​(Belgiu et Drăguţ 2016)​. Además de lo anterior, es un                         
método ya utilizado por el equipo de investigación en el que se encuadra esta                           
práctica.  

✓ La selección de variables climáticas y espectrales con el objetivo de que el modelo                           
sea reproducible a distintas escalas espaciales y en distintos lugares geográficos                     
es una estrategia de generalización para modelizaciones futuras.  

✓ Los estados fenológicos reagrupados en 8 clases hacen más precisa la tarea de                         
clasificación. En este caso de estudio, la imprecisión de los datos in-situ y la                           
limitación temporal de la información espectral y climática (una observación                   
semanal) hace difícil distinguir correctamente los 26 estados. Finalmente el                   
interés agronómico de esta clasificación se concentra en los estados más                     
representativos del cultivo. 

 
 

1.2.4. Comparación de modelos 
 
Ajustamos diferentes modelos de clasificación para los 8 estados fenológicos agrupados                     
registrados (ver tabla 1). Después comparamos dichos modelos con el modelo de                       
referencia (condiciones de referencia). 
 
Como primer paso, ajustamos el modelo de referencia utilizando los cuatro métodos de                         
clasificación seleccionados para este estudio de caso (Lasso Multinomial, Regresión                   
Logística Ordinal, ​Random Forest y ​K-Nearest Neighbors​). A continuación, evaluamos los                     
cuatro métodos en términos de ​accuracy ​y tiempo de cálculo. Finalmente, seleccionamos                       
el ​Random Forest​. 
 
La idea fue luego crear modelos que buscan determinar la relevancia y/o importancia de                           
los grupos de variables (espectrales, climatológicas y espacio-temporales) para la                   
identificación de los estados fenológicos. Evaluamos el potencial predictivo de las                     
variables temáticas de forma aislada, considerando modelos en los que a partir de un                           
solo grupo de variables se pudiera identificar con precisión los estados. En este caso se                             
utilizaron los siguientes modelos: 
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Estados  ~ Bandas Espectrales 
   

Estados ~ Índices espectrales 
 

Estados ~ Tasseled Cap 
   

Estados ~ Clima 
   

Estados ~ Espacio-Tiempo*   
 

Fig. 7 Modelos individuales de clasificación. * Fecha de observación ​in-situ​, departamento 
 
Después, analizamos el potencial de los índices espectrales con los datos interpolados a                         
diez días (iota2) y los datos sin interpolación (inrae). Finalmente acoplamos variables                       
espectrales, climáticas y espaciotemporales para determinar el potencial de clasificación                   
en conjunto.  
 

Estados ~ Índices espectrales + Espacio-Tiempo 
     

Estados ~ Clima + Espacio-Tiempo 
   

Estados ~ Índices + Clima + Espacio-Tiempo 
   

Fig. 8 Modelos acoplados de clasificación 
 
La evaluación de los diferentes modelos de clasificación se realizó a partir de sus                           
matrices de confusión y las siguientes métricas:  
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Tableau 7. Métricas de evaluación de los modelos 

Medida  Fórmula  Concepto 

 
 
Average Accuracy 

(Sokolova et 
Lapalme 2009) 

l

∑
l

i=1

tp  + tni i
tp + fn  + fp + tni i i i

 
son verdaderos positivos, - falsostpi         fpi      

positivo, - falso negativo, y - verdadero   fni            tni      
negativo, respectivamente. 

La eficacia media por clase de 
un clasificador 

 
 
 
 
 

Coeficiente 
kappa de Cohen 
(McHugh 2012) 

 k = (1 − p )e
 (p − p )o e  
 

es la probabilidad empírica de acuerdo en lapo                
etiqueta asignada a cualquier muestra (la           
proporción de acuerdo observada), y es el          pe      
acuerdo esperado cuando ambos anotadores         
asignan etiquetas al azar. Se estima        pe      
utilizando un previo empírico por anotador           
sobre las etiquetas de clase. 

 

La puntuación kappa es un         
número entre -1 y 1. Las           
puntuaciones superiores a 0,8 se         
consideran generalmente como     
un buen acuerdo; cero o menos           
significa que no hay acuerdo         
(etiquetas prácticamente   
aleatorias). 

 
Out-of-bag (OOB) 

error 
(Hastie, 

Tibshirani, et 
Friedman 2009) 

Random Forest se entrena utilizando la agregación de bootstrap, donde cada nuevo                       
árbol se ajusta a partir de una muestra de bootstrap de las observaciones de                           
entrenamiento . El error fuera de bolsa (OOB) es el error medio de cada  x , )  Z i = ( i yi                            
árbol calculado utilizando las predicciones de los árboles que no contienen en su                         
respectiva muestra de bootstrap. Esto permite que ​Random Forest se ajuste y valide                         
mientras se está entrenando. 
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2. Resultados 
 
Los estados fenológicos de ​Vigicultures® determinadas in-situ se establecen como                   
labels de clasificación. Los estados observados son la variable dependiente a predecir.                       
Los perfiles espectrales de Sentinel-2 (S2) son promediados para cada una de las 561                           
parcelas estudiadas. En la primera parte, realizamos una clasificación binaria (presencia                     
o ausencia de flores) para el estado de floración con el método ​Random Forest​,                           
considerando únicamente la información espectral. En la segunda parte, evaluamos en                     
función de la precisión y el tiempo de cálculo, los cinco métodos de clasificación                           
seleccionados. En la tercera parte realizamos clasificaciones teniendo en cuenta el                     
acoplamiento entre las variables las espectrales, climatológicas y espacio-temporales                 
utilizando como base el modelo de referencia. Evaluamos el potencial predictivo de cada                         
uno de los modelos a partir de las métricas resultantes de las matrices de confusión.                             
Finalmente, analizamos el impacto de dos factores en la clasificación: la agrupación de                         
los estados fenológicos y la creación de  un subconjunto de datos balanceados.  
 
2.1. Clasificación Binaria del Estado de Floración con el método de ​Random Forest 
 

Modelo para la Floración 
 
Realizamos un análisis preliminar para determinar la capacidad predictiva de las                     
variables espectrales (índices) en una clasificación binaria, estado de floración (presencia                     
o ausencia de flores).  
 

Floración ~ Índices espectrales 
Donde :  
Indices espectrales ​= Normalized Difference Vegetation Index (NDVI), Normalized Difference Water                     
Index (NDWI), Green Normalized Difference Vegetation Index (GNDVI), Normalized Difference                   
Yellow Index (NDYI), Normalized Difference Moisture Index (NDMI), Enhanced Vegetation Index,                     
Advanced Vegetation Index, Soil Adjusted Vegetation Index, Moisture Stress Index (MSI), Bare Soil                         
Index, Atmospherically Resistant Vegetation Index, Structure Insensitive Pigment Index 
 

Fig. 9 Modelo de floración 
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De acuerdo al gráfico, los datos se             
encuentran desbalanceados. De 6494       
observaciones, tenemos 1376 (21%) en         
estado de floración y 5118 (79%) que no.               
Este desbalance en los datos se debe a               
que estamos confrontando un solo         
estado a los demás.  
 
 
Fig. 10 Distribución de las observaciones para             
las clases binarias (Flor - no flor) 
 
 
 

Los resultados del modelo de clasificación se presentan abajo: 

 
Fig 11. (Izquierda). Matriz de Confusión. (Derecha) Importancia de las variables 

 
La matriz de confusión nos muestra la dificultad que presenta el modelo para                         
determinar de manera adecuada el estado de floración cuando los datos están                       
desbalanceados. Para este estado, la tasa de falsos positivos (elementos mal clasificados)                       
es importante, sin embargo el modelo acierta en el 72.41% de los casos para la floración                               
(ver tabla 8). 

Tabla 8. Matriz de confusión binaria  

  Predicciones 

Clases  0  1 

0  95.52%  4.48% 

1  27.59%   72.41% 
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En cuanto a las variables que mejor explican el modelo, índices espectrales como                         
Moisture Stress Index (​MSI​), el ​Normalized Difference Yellow Index (​NDYI​) y el Normalized                         
Difference Water Index (​NDWI​) son los que mejor explican la presencia o ausencia de                           
flores en las observaciones analizadas.  
 
Las métricas de evaluación del modelo nos muestran que para los datos de                         
entrenamiento el OOB es inferior al 10%. La ​accuracy ​y el coeficiente kappa son 0.91 y                               
0.71 respectivamente. Para el conjunto de validación, la precisión disminuye en un 1% y                           
el kappa en un 3%. 
 
2.2. Clasificación Multi-estados  
 

2.2.1. Estados Fenológicos Agrupados (8 estados) 

 
Fig. 12 Distribución de las observaciones para los estados fenológicos agrupados 

 
 
El dataset se encuentra desbalanceado y el número de observaciones para cada estado                         
difiere de manera observable (fig. 12). Sin embargo, los estados poco representativos (SA,                         
D1-D2 y E) tienen más de 90 observaciones. Estados como el B1-B6, el B7-B10> y el                               
C1-C2 son más homogéneos con cerca de 500 observaciones. Para el estado F1-F2 hay                           
cerca de 250 observaciones. Finalmente para el estado final G, el número de                         
observaciones aumenta. Debido a que la observación de los estados es extraída de                         
Vigicultures®​, podríamos considerar que el elevado número de observaciones para los                     
estados finales de desarrollo del colza sea debido a la presencia de más bioagresores en                             
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ese periodo fenológico. Es por lo anterior, que la identificación de estos estados tiene                           
mayor importancia para nuestra problemática.  
 

2.2.2. Modelos Estatísticos (Comparación de Métodos de clasificación) 
 
Nos preguntamos si uno de los cuatro métodos de clasificación seleccionados podría ser                         
más preciso al momento de predecir los estados fenológicos de las observaciones                       
in-situ. Para ello, construimos un dataset basado en el modelo de referencia (ver fig. 6 ).                               
Obtuvimos un juego de datos compuesto por 3029 observaciones y 428 variables. Este                         
dataset se descompondrá aleatoriamente en dos datasets conformados por muestras                   
diferentes. Un conjunto de entrenamiento compuesto por el 70% del dataset inicial y el                           
otro 30% de las observaciones constituye el conjunto de prueba. Las figuras 13, 14, 16, 18                               
y 20 ilustran las matrices de confusión obtenidas en el dataset de prueba para cada uno                               
de los clasificadores. 
 

Lasso - Multinomial 
 
Utilizamos Lasso en su modalidad multinomial y los resultados para el conjunto de                         
prueba se presentan en la figura 13. La matriz de confusión, nos muestra una ​accuracy                              
global del 85%. Observamos que las clases mejor clasificadas por el modelo son las                           
clases B1-B6 (76.0%), B7-B10> (85.21%), C1-C2 (96.79%) y G (96.71%). Los errores entre                         
clases siempre se dan por la vecindad entre estas (el estado anterior o la posterior al                               
estado que se quiere predecir), a excepción de una observación clasificada como F1-F2,                         
siendo su verdadera clase D1-D2. Observamos también que a menor número de                       
observaciones, las clases vecinas tienen una mayor tendencia a ser confundidas. La clase                         
SA se confunde con la B1-B6 y en el caso de la D1-D2 el modelo la predice como C1-C2.  

 
Fig. 13  Matriz de Confusión para el clasificador Lasso- Multinomial en el conjunto de prueba 
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LASSO nos permite a partir del coeficiente de ​lambda1se determinar el número de                         
variables que explican el modelo sin sobre-ajustarlo (selección de variables), para                     
nuestro caso de estudio, la figura 14 nos muestra como la precipitación (de las primeras                             
semanas) y la humedad relativa (de las últimas semanas) son las variables más                         
representativas. Sin embargo, índices espectrales como el ​GNDVI​, el ​MSI ​y el ​EVI ​están                           
presentes. Estos índices relacionados a la presencia de humedad y al contenido                       
clorofílico de la planta nos permiten concluir que la reacción de la planta a condiciones                             
hídricas determinadas,  definen adecuadamente el estado fenológico de la misma.  

 
Fig. 14 Importancia de las variables explicativas del modelo Lasso-Multinomial 

 
 

Ordinal Logistic Regression  

 
Fig. 15  Matriz de Confusión para el clasificador OLR en el conjunto de prueba 
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Decidimos clasificar los estados a partir de un modelo ordinal dado el carácter                         
secuencial de los estado fenológicos (un estado precede al otro). Los resultados de la                           
matriz de confusión son cercanos al modelo Lasso-multinomial. La ​accuracy ​por clase                       
disminuye para las clases mejor predichas por el clasificador anterior. En este modelo                         
observamos las siguientes ​accuracy B1-B6 (62.67%), B7-B10> (76.06%), C1-C2 (90.38%) y G                       
(95.39%). Sin embargo, en estados con poco número de observaciones (SA, D1-D2 y E), el                             
modelo confunde las clases vecinas. El modelo presenta más errores entre clases                       
distantes que el modelo anterior, pues clasifica observaciones de estados con una                       
distancia interclase de dos (D1-D2 como F1-F2, por ejemplo). Concluimos que ordenar                       
las categorías fenológicas, disminuye la ​accuracy ​del modelo general (79%) en                     
comparación a los resultado obtenidos por el modelo Lasso. 

 
Multinomial Logistic Regression - Réseaux de neurones 

 
El análisis de la matriz de confusión (fig. 16), nos muestra diferencias con relación a la                               
modelización lasso-multinomial en el reconocimiento de los estados analizados uno por                     
uno, a pesar de que la ​accuracy ​global sigue siendo aceptable (83%). Observamos que las                             
clases mejor clasificadas por LASSO disminuyen al utilizar redes neuronales (B1-B6                     
(68.67%), B7-B10> (83.10%), C1-C2 (95.51%) y G (96.71%)). El modelo tiene tendencia a                         
confundir con más facilidad las clases, aun cuando no son vecinas. Esta dificultad hace                           
que, a pesar de tener una buena ​accuracy​, el modelo sea menos eficiente que LASSO.                             
Concluimos que en esta clasificación con datos desbalanceados, las redes neuronales                     
ajustan el modelo de forma cercana a los modelos lineales usados precedentemente. 
 

 
Fig. 16 Matriz de Confusión clasificador MLR- Lasso para el conjunto de Prueba 
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Fig. 17 Importancia de las variables explicativas del modelo MLR 

 
En la fig. 17 podemos observar que las variables seleccionadas por el modelo para                           
clasificar los estados fenológicos, son el índice ​BSI ​(​Bare Soil Index​) donde las bandas B2,                             
B4, B8 y B11 están implicadas, así como la variable climática rayonnement Solaire a la                             
mitad del año precedente a la fecha de observación in-situ del estado. Podríamos                         
concluir que el modelo clasifica basado en condiciones de ausencia y/o presencia de                         
vegetación (Índice ​BSI​) y a la respuesta espectral del colza a la intensidad de la radiación                               
solar. 
 

Random Forest 
 
Utilizamos un clasificador no lineal para determinar si este método representaba una                       
mejora de la precisión en la predicción de los estados. Los resultados se presentan abajo                             
en la matriz de confusión.  

 
Fig. 18 Matriz de Confusión para el clasificador​ Random Forest​ en el conjunto de prueba 
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Observamos que los resultados son comparables a los métodos lineales ajustados                     
anteriormente. La similitud en la clasificación con los modelos multinomiales es la más                         
cercana. Con una ​accuracy ​general de 84%, identificamos que para las clases donde las                           
observaciones son pocas, el clasificador continúa confundiendo la clase objetivo con sus                       
vecinas (SA, D1-D2, E y F1-F2). Los estados D1-D2 y F1-F2 fueron clasificados fuera de                             
las clases inmediatamente vecinas(a una distancia de dos clases). Para las clases mejor                         
identificadas, los resultados continúan siendo adecuados. Para el estado B1-B6 (74.00%),                     
B7-B10> (87.32%), C1-C2 (93.59%) y G (96.71%). Concluimos que el tipo de acercamiento                         
(lineal o no lineal), no afecta drásticamente los resultados de la clasificación, sin                         
embargo LASSO presenta una ​accuracy ​mejor (entre un 6% y un 1%) que los otros                             
modelos. 

 
Fig. 19 ​Importancia de las variables explicativas del modelo RF 

 
Cuando observamos la importancia de las variables que selecciona el modelo, podemos                       
concluir que son las variables climáticas las que determinan la clasificación de una                         
observación en un estado u otro, siendo las más relevantes en el método de ​Random                             
Forest​, las temperaturas (mínima y media), los grados días de desarrollo (gdd) del final                           
del primer trimestre y la radiación solar de la mitad del año precedente a la                             
observación in-situ. Los índices espectrales que evalúan la humedad del suelo y el estrés                           
hídrico de la planta complementan el modelo. 
 

k-Nearest Neighbors (kNN) 
 
Ajustamos un modelo no paramétrico basado en distancias (euclidianas), para                   
determinar si la precisión de los resultados de este acercamiento es comparable con los                           
modelos anteriores.  
En la matriz de confusión para este modelo (fig. 20) continuamos observando resultados                         
cercanos a los anteriores. Con una precisión general cercana a Lasso-Multinomial                     
(83.4%), una sola observación clasificada a más de una clase de distancia (D1-D2) y una                             
clasificación muy acertada en los estados B1-B6 (71.33%), B7-B10 (82.39%), C1-C2                     
(94.87%) y G (95.72%) es un método interesante para la identificación de los estados                           
fenológicos. Los estados con pocas observaciones continúan teniendo un número                   
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importante de falsos positivos sin embargo el modelo las clasifica bien. Concluimos que                         
con la elección de un clasificador simple se obtienen resultados similares a modelos más                           
parametrizados sin embargo limitar la decisión de clasificación a la distancia podría ser                         
poco reproducible y explicativo. 

 
Fig. 20 Matriz de Confusión para el clasificador ​K-Nearest Neighbors​ en el conjunto de prueba 

 
Finalmente, podemos concluir que al ajustar cinco modelos, cada uno con un                       
acercamiento diferente, los clasificadores convergen en resultados cercanos. Las clases                   
mejor clasificadas fueron la clase C1-C2 y la clase G. Estas clases presentan un buen                             
número de observaciones in-situ y patrones climáticos y/o espectrales que permiten                     
clasificarlos con facilidad sin obtener errores representativos. Observamos también que                   
las etapas confundidas por nuestros modelos podrían tener similitudes en las variables                       
climáticas y en su comportamiento espectral.  
 
En la siguiente tabla, observamos a modo de resumen los cinco clasificadores evaluados.                         
Si los valores de ​accuracy ​son similares con un máximo para el Lasso - Multinomial, los                               
tiempos de cálculo para este modelo más complejo son también mucho más importantes                         
que para los otros. Por otro lado, el modelo de ​Random Forest tiene el tiempo de                               
estimación más bajo, a la vez que conserva una excelente capacidad de predicción que                           
nos lleva a confirmar nuestra elección del modelo de ​Random Forest para la continuación                           
de nuestras investigaciones sobre la importancia de las diversas variables explicativas. 
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Tabla 9. ​Accuracy ​y tiempo de cálculo para los modelos evaluados 

Método  Accuracy  Tiempo de Cálculo (s) 

Lasso - Multinomial   85.4%  1200 

Multinomial Logistic Regression     
- Redes Neuronales 

83.4%  26 

Ordinal Logistic Regression  79.6%  60 

Random Forest  84.2%  18 

k-Nearest Neighbors  83.4%  60 

 
 
 
2.3. Comparación de la capacidades predictivas aportadas por diferentes tipos de                   

datos  
 

2.3.1. Pretratamientos de las Bandas Espectrales (por extracción iota2) 
 
En el ejercicio de determinar las variables más significativas para predecir el cambio de                           
estado en el colza, se quiso identificar si la clasificación a partir de diferentes                           
transformaciones de la información espectral (Bandas, Índices y ​Tasseled Cap​) podrían                     
mejorar el modelo de referencia. Comparamos la ​Accuracy ​y el error fuera de bolsa                           
(OOB) de cada una de las transformaciones espectrales, así como el porcentaje de éxito                           
de clasificación  por clase en los datos de entrenamiento. 

 
Fig. 21 ​Accuracy ​ y OOB de cada modelo espectrales(conjunto de Entrenamiento) 

 
En la fig. 21, para el caso de ​Tasseled Cap un OOB del 0.42, una precisión del 0.68 y un                                       
kappa de 0.59 lo posiciona como el menos performante. Para las bandas y los índices                             
espectrales, las métricas de evaluación son cercanas. Con un OOB de 0.33, una precisión                           
y un kappa de 0.70 y 0.60 respectivamente, la elección entre los índices y las bandas se                                 
reduce a efectos prácticos, como la facilidad de interpretación en el caso de los índices                             
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donde la simplicidad de aplicación en el caso de la bandas. Por lo anterior, se podría                               
argumentar que es mejor utilizar en orden descendente, las bandas, los índices y la                           
metodología ​Tasseled cap​ para estudiar los estados del colza. 
 
Al comparar la ​accuracy ​de los modelos espectrales con el modelo de referencia                         
(Baseline), observamos una diferencia del 16% para bandas y del 26% para ​Tasseled Cap​.                           
Las variables espectrales clasifican cerca del 70% de las observaciones, sin embargo el                         
modelo de referencia (índices + clima) continúa siendo el mejor clasificador (84%). La                         
adjunción de los datos climáticos a los datos espectrales aporta bastante información.  
 
Observando la siguiente tabla podemos apreciar que el porcentaje de acierto de los                         
modelos espectrales para cada estado, en el conjunto de entrenamiento.  
 
Tabla 10. Porcentaje de aciertos de cada modelo por cada estado Fenológico 

Modelo   SA  B1-B6  B7-B10  C1-C2  D1-D2  E  F1-F2  G 

Bandas  55.56%  67.01%  54.58%  62.19%  10.00%  29.17%  42.94%  85.69% 

Índices  28.79%  71.79%  50.30%  76.99%   0.00%  15.87%  41.25%  89.73% 

TassCap  16.67%  73.50%  23.80%  60.55%  1.33%  12.70%  36.25%  82.70% 

BaseLine  54.55%  77.21%  82.53%  95.62%  49.33%  49.21%  71.88%  95.36% 

Codigo de colores: Amarillo mejores clasificaciones. Azul segundas mejores clasificaciones 
  
El modelo de referencia ofrece una mejor clasificación para todos los estados                       
fenológicos exceptuando el primero. El segundo lugar es alcanzado por el modelo que                         
considera las 10 bandas espectrales. El modelo de los índices espectrales sigue de cerca                           
al de las bandas sin embargo en estados donde el número de observaciones es bajo,                             
tiende a confundir los estados objectivos con las clases vecinas. El modelo ​Tasseled Cap                           
solamente supera a los dos anteriores en el estado B1-B6. Es posible clasificar los                           
estados exclusivamente a partir de información espectral pero es importante considerar                     
el aporte de otras variables para afinar la clasificación.  
 

2.3.2. Focalización en imágenes recientes (iota2-inrae) - Metodologías de               
extracción 

 
Para analizar el impacto de la metodología de extracción de la información espectral,                         
realizamos una clasificación a partir de los índices espectrales para ambos juegos de                         
datos (iota2 y inrae). 
 
La ​accuracy ​de las clasificaciones a partir de la metodología ​iota2 es del 0.68 frente a la                                 
metodología inrae que es del 0.62. En cuanto al OOB, ​iota2 ​identifica las clases con una                               
reducción del 5% en comparación a  inrae. 
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Fig. 22 ​Accuracy ​ y OOB de cada metodología de extracción (conjunto de entrenamiento) 

 
Cuando comparamos los dos clasificadores a partir del porcentaje de éxito por clase,                         
observamos que ​iota2 ​es el mejor. Las clases B1-B6, B7-B10, C1-C2 y G que presentan un                               
número de observaciones importante (conjunto de entrenamiento: 351, 332, 365 y 711                       
observaciones respectivamente), son los estados mejor predichos por el modelo. En                     
ambos casos el modelo no encuentra un patrón para clasificar el estado D1-D2.  
 
Para ambos juegos de datos el estado D1-D2 es confundido por el estado C1-C2 (40% de                               
las observaciones son clasificadas en la clase precedente). En la escala BBCH ambos                         
estados corresponde al desarrollo de hojas (roseta) y de órganos vegetativos que al ser                           
tan cercanos, resulta difícil diferenciar solamente con información espectral. 
 
Tabla 11. Porcentaje de aciertos de cada modelo por cada estado Fenológico 

Modelo   SA  B1-B6  B7-B10  C1-C2  D1-D2  E  F1-F2  G 

Indices_Iota2  28.79%  71.79%  50.30%  76.99%   0.00%  15.87%  41.25%  89.73% 

Índices_Inrae  31.82%  64.67%  36.75%  72.33%  0.00%  14.29%  38.75%  86.36% 

BaseLine  54.55%  77.21%  82.53%  95.62%  49.33%  49.21%  71.88%  95.36% 

Codigo de colores: Amarillo mejores clasificaciones. Azul segundas mejores clasificaciones 
 
Podemos concluir que el uso de la cadena de tratamiento iota2, presenta mejores                         
resultados en el estado actual de la cadena Inrae. 
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2.3.3. Variables climáticas vs. Variables Espacio-Temporales 
 
Para determinar si las variables climáticas son más predictivas que las variables espacio                         
temporales, comparamos ambos modelos teniendo las condiciones de referencia como                   
base. 
 
Las gráficas muestran resultados muy cercanos. Con una ​accuracy ​de 0.81 y un kappa de                             
0.77 para las variables espacio-temporales frente a una ​accuracy ​de 0.82 y 0.78 para las                             
variables climáticas, la diferencia principal es el OOB siendo ligeramente mayor para el                         
clasificador ​Date_Dep ​(0.19 vs 0.18). 

Fig 23. ​Accuracy ​ y OOB modelos basados en variables climatológicas y espacio-temporales 
 
A nivel de ​accuracy ​por clase, los estados B1-B6, B7-B10, C1-C2 y G presentan las                             
mejores predicciones. 
 
Tabla 12. Porcentaje de aciertos de cada modelo por cada estado Fenológico 

Modelo   SA  B1-B6  B7-B10  C1-C2  D1-D2  E  F1-F2  G 

Date_Dep  40.91%  76.64%  74.70%  97.81%  38.67%  31.75%  54.37%  97.61% 

Weather  51.52%  72.36%  74.70%  95.89%  48.00%  46.03%  71.45%  95.64% 

BaseLine  54.55%  77.21%  82.53%  95.62%  49.33%  49.21%  71.88%  95.36% 

Codigo de colores: Amarillo mejores clasificaciones. Azul segundas mejores clasificaciones 
 
El análisis de variables climáticas y espacio temporales continúan siendo, en general,                       
ligeramente menos eficaces que el modelo de referencia al momento de la predicción.                         
Sin embargo estados como C1-C2 y G son mejor clasificados por las variables                         
espacio-temporales. Concluimos que después del modelo de referencia, son las variables                     
climáticas las que mejor clasifican los estados fenológicos para la colza pero la pérdida                           
de precisión por no utilizar la información espectral es leve. De misma manera, el                           
conjunto de fechas y departamentos brinda una ​accuracy ​comparable a la información                       
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meteorológica, aunque para estados específicos e importantes como aquello de la                     
floración, el uso de las variables climáticas implica una diferencia importante (54.37% -                         
71.88%). 
 

2.3.4. Combinación de información de diferentes variables temáticas  
 

Nos preguntamos si la combinación de diferentes variables temáticas en un solo modelo                         
podría mejorar la clasificación de los estados fenológicos. Construimos combinaciones                   
que combinaban dos variables temáticas y excluían la tercera (clima+espacio-tiempo y                     
índices espectrales + espacio-tiempo), para finalmente combinar las tres (clima + indices                       
+ espacio-tiempo) y comparamos su desempeño con las métricas de la ​accuracy ​y el OOB. 
 
La figura 24. nos muestra ​accuracy ​bastantes cercanas entre los diferentes modelos. Los                         
modelos en los que utilizamos la información espacio-temporal acoplada con las                     
variables espectrales obtuvimos una ​accuracy ​de 0.81, pero cuando acoplamos variables                     
espacio-temporales con variables climáticas, la ​accuracy ​incrementa en un 1%. Por otro                       
lado, al acoplar los tres conjuntos de variables temáticas en un solo modelo (WIDD:                           
Clima + Índices espectrales + Date + departamento) obtuvimos una ​accuracy muy                         
cercana a aquella del modelo de referencia pero con un error de clasificación mayor                           
(0.156 vs 0.157). 

 
Fig 24. ​Accuracy ​ y OOB modelos basados en combinación de variables espectrales, climatológicas y 

espacio-temporales 
 
Finalmente al comparar el porcentaje de éxito en la clasificación por cada una de las                             
clases observamos que en algunos estados fenológicos hay modelos que clasifican mejor                       
o que los resultados son iguales al modelo de referencia. En clases como B7-B10 o                             
F1-F2, el modelo ​WIDD predice las clases en el 82.53% y el 71,88% de los casos                               
respectivamente. Por otro lado, en clases como C1-C2, D1-D2, E y G, los mejores                           
resultados están distribuidos en los tres modelos. Podemos concluir que el                     
acoplamiento entre las diferentes variables nos ofrece una mejora en la predicción de                         
estados individuales pero que el modelo elegido como referencia sigue siendo un buen                         
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modelo siendo para todas las etapas el mejor o el segundo mejor modelo (y sólo                             
ligeramente).  
 
Tableau 13. Porcentaje de aciertos de cada modelo por cada estado Fenológico 

Modelo   SA  B1-B6  B7-B10  C1-C2  D1-D2  E  F1-F2  G 

Weather_DateDep  53.03%  70.94%  74.40%  95.39%  49.13%  50.797%  71.36%  95.20% 

Índices_DateDep  45.45%  76.07%  79.82%  96.44%  14.67%  25.40%  63.12%  96.22% 

WIDD  12 51.52%  76.92%  83.13%  96.34%  52.00%  47.62%  70.04%  95.14% 

BaseLine  54.55%  77.21%  82.53%  95.62%  49.33%  49.21%  71.88%  95.36% 

Codigo de colores: Amarillo mejores clasificaciones. Azul segundas mejores clasificaciones 
 
Además, ya hemos visto que las variables climáticas son las que mayor peso tienen a la                               
hora de clasificar los estados fenológicos. Concluimos que aunque los modelos                     
anteriores ofrecen resultados cercanos al modelo de referencia, es este el más versátil                         
para clasificaciones en las que se quiera predecir sin depender de variables de tiempo y                             
espacio y así ampliar el espectro de utilización a otros lugares. 
 

   

12 WIDD = Weather + Índices +DateDep 
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2.5. Impacto de la agrupación y del remuestreo 
 

2.4.1. Impacto de la agrupación de estados (26 estados) 
 

 
Fig 25. ​Distribución de las observaciones para los estados fenológicos no agrupados 

 
Cuando observamos el número de observaciones de cada uno de los estados no                         
agrupados, observamos una fuerte variabilidad. Estados fenológicos como el C1, el C2 el                         
G1 y el G4 -Floraison terminée son los más representativos. Por su lado estados                           
minoritarios como Semis, B1, D1 y D2 con un número de observaciones inferior a 50,                             
presentan un gran desafío para los clasificadores utilizados. Nos preguntamos si un                       
conjunto de datos fuertemente desbalanceado, podría ser bien clasificado utilizando las                     
condiciones de referencia y el método de ​Random Forest​.  
 
La figura 26 nos muestra la comparación de las matrices de confusión para los estados                             
agrupados y no agrupados. Observamos que para los estados iniciales (izquierda), el                       
modelo confunde la clase objetivo con hasta 8 clases diferentes (estado B3), sin embargo                           
estas 8 clases son todas consideradas como vecinas en el modelo de 8 clases y los errores                                 
son concentradas en gran medida en las clases más cercanas. A partir del estado C1 la                               
cantidad de verdaderos positivos aumenta y la diferencia entre clases es mejor. La                         
calidad de la clasificación, en relación con el modelo de 8 clases, puede incluso                           
mejorarse de vez en cuando. Por ejemplo, el conjunto C1-C2 sólo ve 4 confusiones con                             
D1-D2 en lugar de 10. El conjunto D1-D2 todavía tiene 8 confusiones con C1-C2 y                             
aumenta de 6 a 9 sus confusiones con E pero no tiene ninguna confusión con el estado                                 
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más distante F1-F2. El estado E sólo admite confusiones con las subclases más cercanas                           
(D2 y F1). El conjunto F1-F2 tampoco se confunde ya con el estado más lejano D1-D2.                               
También es posible hacer distinciones claras dentro de las clases agrupadas en ciertos                         
casos, como el muy amplio grupo de observaciones G: La oposición entre las tres                           
primeras clases de G y las tres últimas es particularmente marcada. En general, la                           
agrupación de los valores en torno a la diagonal es sorprendente y sugiere que una                             
estimación a nivel de la clase inicial ​Vigicultures® ​seguiría siendo informativa,                     
especialmente si se aumentara el número todavía pequeño de observaciones por clase.                       
Sin embargo, las métricas de evaluación caen lógicamente con el aumento del número                         
de clases. Con 26 estados fenológicos la ​accuracy ​general del modelo es inferior al 50% y                               
el error de (OOB) es más que triplicada (0.15 vs 0.51).  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 26. Matrices de confusión del modelo de referencia con estados fenológicos agrupados (izquierda) y los estados 
no-agrupados (derecha) 

 
Concluimos que, la estrategia de agrupación nos ha permitido tener resultados                     
sintéticos probablemente generalizables a una clasificación más fina que parece en                     
parte posible en caso que se necesite. 
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2.4.2. Modelo de referencia con estrategia de remuestreo  
 
Debido a la dificultad que encontramos para predecir las clases en las que el número de                               
observaciones es considerablemente inferior, decidimos evaluar las condiciones de                 
referencia en un conjunto de datos balanceado a partir de tres métodos de remuestreo.                           
Inicialmente balanceamos el conjunto de datos realizando un proceso de ​downsampling​.                     
Para este método conservamos todos los casos de la clase minoritaria, y elegimos                         
aleatoriamente una muestra con el mismo número de casos en las clases mayoritarias.                         
Seguidamente, balanceamos los datos haciendo un upsampling en donde dejamos todas                     
las instancias de la clase mayoritaria, y aumentamos el número de casos de las clases                             
minoritaria muestreando con reemplazamiento. Finalmente, utilizamos la técnica               
SMOTE que incluye ​Upsampling y Downsampling al mismo tiempo. Para mantener el                       13

uso de los conjuntos de entrenamiento/prueba lo aplicamos por separado a cada uno de                           
los dos conjuntos.  
 
Los resultados que nos muestra la figura 27 nos permite identificar que el mejor modelo                             
es el balanceado a partir del método de upsampling. Con una ​accuracy ​de 0.98% para el                               
conjunto usado para el entrenamiento del modelo, este modelo aumenta la performance                       
de la clasificación de los estados fenológicos en un 14% en comparación al modelo de                             
referencia. El error de clasificación se reduce drásticamente a un valor de 0.017 frente a                             
un valor de 0.15 del modelo de referencia. La técnica híbrida ​SMOTE ​tiene una ​accuracy                             
de 0.88 mejorando en un 4% la ​accuracy ​del modelo de referencia como también un OOB                               
inferior (0.11 vs 0.15). Sin embargo utilizar la técnica de downsampling para balancear el                           
conjunto datos reduciendo el número de observaciones desmejoran las predicciones. 

 

Fig 27. ​Accuracy ​ y OOB del modelo de referencia con datos balanceados 
 
Podríamos concluir que la utilización de métodos de remuestreo para balancear los                       
datos mejora notoriamente la calidad de la clasificación con una inversión mínima en                         
tiempo de cálculo. Sin embargo al evaluar el modelo en el conjunto de test encontramos                             
una disminución en las métricas de evaluación. Para el conjunto de entrenamiento                       

13 Synthetic Minority Oversampling Method 
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tenemos una ​accuracy ​de 0.98, un kappa de 0.98 y un OOB del 2%. Sin embargo, para el                                   
conjunto de test obtenemos una ​accuracy ​de 0.73 y un kappa de 0.69 que son inferiores a                                 
la estrategia sin remuestreo. La estrategia de remuestreo no parece entonces permitir ​in                         
fine​ mejorar la predicción.  
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4. Discusión 
 
La naturaleza subjetiva de las observaciones fenológicas terrestres siempre ha sido un                       
problema en el estudio reciente de la fenología ​(Czernecki, Nowosad, et Jabłońska 2018)​.                         
El desarrollo de métodos de clasificación para identificar patrones que ayuden a la toma                           
de decisiones en el análisis del comportamiento de la vegetación de interés agrícola es el                             
pilar de análisis de este problema de investigación. 
 
Con el interés de determinar la importancia de las variables espectrales, climáticas y                         
espacio-temporales en la identificación de los diferentes estados fenológicos de cultivos                     
como el colza, evaluamos diferentes hipótesis. Inicialmente realizamos una clasificación                   
binaria para el estado de floración en la que identificamos que índices espectrales como                           
el ​MSI​, el ​NDYI y el ​NDWI son elementos fundamentales para la clasificación de este                             
estado. Las métricas de evaluación son adecuadas pero la incidencia en el desbalanceo                         
de los datos dificulta la tarea de clasificación. Seguidamente, encontramos que al                       
evaluar cinco métodos de clasificación los resultados son bastante cercanos.                   
Esperábamos que el modelo ​OLR ​que tiene en cuenta el orden jerarquizado de las clases,                             
fuera el más acertado ya que es el más próximo a la realidad (ordena las etiquetas en un                                   
orden de ocurrencia), pero métodos como el ​Random Forest se mostraron más                       
performantes. Por otra parte, estudiando las diferentes posibilidades de agrupamiento                   
entre variables temáticas, encontramos que las variables meteorológicas son decisivas                   
para la clasificación y que en situaciones en las que las observaciones in-situ no estén                             
disponibles o sean inconsistentes, un acoplamiento entre clima e índices espectrales                     
permite predecir los estados fenológicos con un ​accuracy ​del 84% con muy pocos errores                           
implicando clases muy distintas. Finalmente, el impacto del agrupamiento de las clases                       
para mejorar el éxito de la clasificación, es una herramienta que permite priorizar los                           
estados más importantes a estudiar. La utilización de técnicas de remuestreo de los                         
datos mejora el ​accuracy ​aparente del modelo de referencia pero introducen un                       
sobreajuste del modelo que resulta en una diferencia de ​accuracy ​entre el conjunto de                           
entrenamiento y el conjunto de test cercana al 25%. 
 
Los parámetros fenológicos de las imágenes satelitales multitemporales tienen el                   
potencial de indicar el desarrollo del crecimiento de los cultivos en una gran región                           
(Fisher et Mustard 2007; Zhong et al. 2011; Zhong, Gong, et Biging 2014; Li et al. 2014)​.                                 
Específicamente para la floración, al igual que ​d’Andrimont et al. (2020)​, identificamos                       
que el índice ​NDYI ​captura el aumento en la coloración amarilla de las flores de colza en                                 
el banda espectral del verde(B3). El amarillo de los pétalos de colza se debe a su                               
contenido en pigmentos carotenoides que absorben longitudes de onda de ~450 nm                       
(Sulik et Long 2016)​. Las condiciones internas (la clorofila o la capacidad de retención de                             
agua) y/o externas de humedad (suelo) también son importantes en la clasificación.                       
Índices como el NDWI y el MSI en donde las bandas B8 (NIR), B8a(Red Edge 4) y                                 
B11(SWIR 1) están implicados. ​Random Forest se perfila como un algoritmo adecuado                       
para clasificar los estados fenológicos de forma individual, sin embargo los análisis                       
subsiguientes nos permitieron generalizar el modelo y aplicarlo a una clasificación                     
multi-estados. 
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Para desarrollar una herramienta que ayude en el proceso de predicción de los estados                           
fenológicos del colza, desarrollamos un enfoque basado en un modelo de referencia que                         
selecciona los índices espectrales y las variables climáticas para la toma de decisiones.                         
Utilizando ese modelo de referencia las comparaciones para determinar el mejor                     
clasificador se hacen más fáciles. Los datos in-situ para nuestro caso de estudio son                           
limitados, ya que obtener datos de campo fiables y exactos a una escala apropiada es un                               
esfuerzo difícil (Fisher y Mustard 2007). El enfoque de clasificación basado en la                         
clasificación de clases categóricas tiene ventajas cuando la disponibilidad de datos de                       
realidad de terreno es limitada (Zhong et al. 2011).  
 
Por lo anterior, la decisión de evaluar los clasificadores para comparar su rendimiento                         
entre sí (benchmarking) permite establecer una referencia/orientación empírica para                 
seleccionar los clasificadores más apropiados para problemas específicos ​(C. Zhang et                     
al. 2017)​. Al igual que ​Lorena et al. (2011)​, encontramos que para estudios                         
biogeográficos, RF es una técnica de modelización prometedora, debido a su alto                       
rendimiento en conjuntos de datos compuestos por grandes números de variables                     
diversamente independientes. Sin embargo, otros modelos de regresión multinomial                 
basados en el Lasso o redes neuronales presentan ​accuracy ​considerablemente                   
performantes. En cualquier caso, el compromiso entre eficiencia y velocidad justifica la                       
elección por ​Inglada et al. (2016) del ​Random Forest como el algoritmo de referencia para                             
la clasificación de la ocupación del suelo para​ iota2​ ​(Inglada et al. 2015)​. 
 
Por otra parte, de acuerdo a ​Zhang, Friedl, et Schaaf (2009)​, se ha demostrado que los                               
índices de vegetación proporcionan una mejor descripción del crecimiento de los                     
cultivos y mejoran considerablemente la precisión de la clasificación de los mismos. Sin                         
embargo, en nuestro caso, al analizar diferentes transformaciones de la información                     
espectral, encontramos que las bandas espectrales individuales son variables igual de                     
interesantes que los índices, en algoritmos como ​Random Forest, para diferenciar una                       
clase de otra porque los árboles de decisión permiten combinaciones de variables que                         
pueden llegar a ser igual de interesantes a las proporcionadas por los índices                         
espectrales. Analizando la contribución de cada variable explicativa en el modelo final                       
(modelo de referencia), encontramos una influencia pequeña/moderada, de la                 
información espectral satelital. Por el contrario, las características meteorológicas son                   
las más predictivas en el caso de las fases fenológicas otoñales,invernales y                       
primaverales, lo que demuestra una relación con la temperatura de esos periodos. La                         
influencia de la temperatura en el crecimiento de las plantas es definitivamente mayor                         
en la primavera, cuando comienzan su ciclo de desarrollo después de la pausa de                           
invierno ​(Pope et al. 2013; Springate et Kover 2014)​. Sin embargo, la información                         
meteorológica también proporciona por su carácter cíclico una información sobre la                     
temporalidad de la observación que es muy importante en la identificación del estadio                         
adecuado como lo indica la eficiencia de los modelos con datos espacio-temporales. 
 
Dentro de nuestro análisis, el proceso de clasificación no considera explícitamente la                       
dimensión temporal (acercamiento del conjunto de datos como serie temporal). Sin                     
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embargo, existen modelos que incorporan la fecha de observación como variable                     
explicativa, que junto a información meteorológica podría dar resultados satisfactorios                   
en términos de ​accuracy ​ en estudios posteriores. 
 
En cuanto a la metodología de extracción de la información espectral, cuando la escala                           
espacial de análisis es elevada, la presencia de nubes y sombras en las imágenes                           
satelitales son situaciones a considerar. Según ​Inglada et al. (2015) los datos interpolados                         
tienden a reducir estos inconvenientes. Es por tal motivo, que los resultados obtenidos                         
con la metodología ​iota2 presentan mejores resultados que la metodología inrae en                       
donde no consideramos el uso de la máscara de nubes propuesta por el producto theia.                             
No obstante, la metodología ​inrae tiene la ventaja de poder ser utilizada en tiempo real                             
mientras que el ​iota2 aquí permite la interpolación utilizando la siguiente imagen                       
aunque se tome mucho tiempo después. 
 
Si bien en este estudio no realizamos un proceso de clustering estadístico, la decisión de                             
agrupar estados basados en la experticia de equipo de investigación y la comparación                         
con la escala BBCH, nos permitió obtener un modelo con una ​accuracy ​adecuada. Los                           
resultados en las matrices de confusión nos muestran que a mayor número de clases                           
(estados fenológicos) a predecir, la variabilidad y la presencia de datos atípicos aumenta,                         
lo cual tiende a disminuir la eficiencia en la tarea de clasificación, pues las clases son                               
confundidas entre sí con mayor frecuencia .  
 
A pesar de las deficiencias de este enfoque y limitaciones que nos presentan los datos                             
satelitales en la modelización de la fenología de las plantas, este acercamiento aún                         
podría ser capaz de dar una aproximación fiable a las observaciones terrestres                       
tradicionales, especialmente en lo que respecta a los finales del invierno (estados                       
B7-B10> y C1-C2) y de la primavera (estados F1-F2 y G). Sin embargo, la tendencia a                               
confundir estados vecinos es una variable que debe seguir siendo analizada en trabajos                         
posteriores. 
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6. Límites y Dificultades 
 
En el ejercicio de dar solución a la pregunta de la investigación, el tiempo es una de las                                   
variables más condicionantes, es por tal razón que considerar todas las posibilidades de                         
acoplamiento entre variables temáticas no fue posible. Podría darse el caso de que una                           
combinación no considerada se obtenga una precisión mejor a las obtenidas en nuestro                         
análisis.  
 
Por otro lado, de acuerdo al análisis bibliográfico, el estudio fenológico de los cultivos,                           
en la mayoría de los casos es analizado como una serie temporal. Nosotros asumimos el                             
riesgo de analizar la problemática desde un acercamiento diferente para establecer el                       
potencial predictivo de las variables climáticas y espectrales sin considerar                   
explícitamente la temporalidad del fenómeno. El acercamiento convencional fue                 
abordado en el marco de otra pasantía en Toulouse en el CESBIO. 
 
La calidad del conjunto de datos es una variable a considerar para futuros análisis, si                             
bien ​Vigicultures® nos ofrece información fenológica su objetivo principal es la                     
surveillance epidemiológica de los cultivos. Si bien estos datos no están orientados                       
específicamente a la vigilancia de los estados y podrían ser imprecisos, ofrecen una                         
oportunidad única de ajustar un modelo de predicción a un gran número de campos                           
repartidos por toda Francia. 

 
Hemos tenido dos tipos de dificultades durante la pasantía: las dificultades del proceso                         
de investigación y las dificultades logísticas. 
 
Las dificultades en el proceso de investigación están asociadas principalmente al                     
procesamiento de la información espectral. En la segunda metodología de extracción                     
(inrae, ver pág. 14), realizamos las correcciones atmosféricas pero no tuvimos en cuenta                         
la máscara de nubes, el tiempo no permitió re-extraer y re-procesar los datos, sin                           
embargo esta tarea es la más importante para poder comparar correctamente ambas                       
metodologías (iota2/inrae) pues el interés de la metodología inrae es utilizar la imagen                         
satelital más reciente. Este acercamiento en el que reducimos el número de                       
observaciones podría ser presentar otra dificultad limitando la disponibilidad de los                     
datos satelitales , sin embargo podría mejorar la pertinencia de la información usada.  
 
En cuanto a las dificultades logísticas, iniciar un proceso de aprendizaje aplicado en una                           
situación de crisis sanitaria mundial (COVID-19) dificulta la tarea en múltiples                     
aspectos, siendo el más relevante el proceso administrativo en el marco de un                         
confinamiento generalizado. sin embargo la buena comunicación y el esfuerzo                   
mancomunado ayudaron a la solución de las dificultades en los tiempos adecuados. Por                         
otra parte, esta situación atípica permitió ajustar los recursos internos de cada una de                           
las partes para que el trabajo a distancia se vuelva una estrategia eficiente para el                             
aprendizaje. Otra dificultad logística estuvo asociada al daño (corrupción material) del                     
disco duro donde estaba almacenada todas las imágenes satelitales, lo que retrasó una                         
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semana los procesos siguientes, sin embargo esto permitió probar y confirmar la                       
eficiencia de la cadena de tratamiento. 
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Conclusión 
 
El interés de nuestro acercamiento de clasificación radica en que una vez clasificados                         
los estados fenológicos a partir del modelo de referencia, seamos capaces de establecer                         
relaciones entre la cantidad de bioagresores y un estado fenológico determinado, lo que                         
puede ayudar a la identificación de consecuencias en el rendimiento final de los                         
cultivos. Aunque el estudio no alcanza a determinar el impacto de dichas relaciones, los                           
resultados obtenidos establecen un primer paso importante para continuar                 
construyendo conocimiento en esta área. 
 
El estudio y el análisis de los resultados obtenidos nos permitieron proponer un modelo                           
performante basado en el algoritmo de ​Random Forest para la clasificación de los estados                           
fenológicos del colza a partir de variables meteorológicas y espectrales. Aunque el                       
modelo no pueda completamente sustituir las observaciones ​in situ​, sí puede ayudar en                         
el proceso de adopción de decisiones y disminuir la dependencia al trabajo de campo                           
para la obtención de información fenológica, especialmente cuando en los datos de                       
archivo sobre bioagresores y rendimiento no se identifican las fechas de los cambios de                           
fase fenológica sino que se dispone de imágenes de satélite. 
 
Las perspectivas futuras de este trabajo se formulan desde tres frentes. En primer lugar,                           
analizar el efecto de un agrupamiento aleatorio de los estados fenológicos sin considerar                         
la agrupación de estados ​Vigicultures® a partir de la clasificación BBCH. La idea de                           
realizar un proceso de clusterización automática (clasificación no supervisada) para                   
agrupar las clases en las que el modelo tiene mayor dificultad en diferenciar podría ser                             
un camino interesante a explorar. En segundo lugar, cuando existen clases                     
excesivamente representadas se corre el riesgo de que el modelo aprenda demasiado en                         
detrimento de las clases menos representadas. Para evitar este problema, se propone                       
profundizar en la construcción de un conjunto de datos equilibrado donde la                       
composición en cada estado sea casi idéntica. Finalmente, se propone ajustar un modelo                         
que integre varios submodelos para cada estado fenológico y se evalúen sus resultados                         
con los obtenidos hasta el momento. 
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Anexos 

Tablas de resultados de las modelizaciones con los datos de                   
entrenamiento y los datos de test  

Spectral 
 

Ensemble de 
données  OOB 

Modèle 
Entraînement 

Validation 
Test  Précision 

du modèle  

Différence avec 
mod. de réf. 

baseline = 0.84 accuracy  kappa  accuracy  kappa 

Bandes  32.27%  0.68  0.59  0.70  0.62  0.68  0.16 

Índices  32.50%  0.67  0.59  0.69  0.60  0.67  0.17 

TassCap  52.35%  0.58  0.46  0.60  0.49  0.58  0.26 

 

Inrae_Iota2 (Indices) 
 

Ensemble de 
données  OOB 

Modèle 
Entraînement 

Validation 
Test  Précision 

du modèle  

Différence avec 
mod. de réf. 

baseline = 0.84 accuracy  kappa  accuracy  kappa 

Indices_Iota2  32.5%  0.68  0.59  0.69  0.60  0.68  0.17 

Indices_Inrae  37.9%  0.62  0.52  0.65  0.56  0.62  0.22 

Autres modèles 
 

Ensemble de 
données  OOB 

Modèle 
Entraînement 

Validation 
Test  Précision 

du modèle  

Différence avec 
mod. de réf. 

baseline = 0.84 accuracy  kappa  accuracy  kappa 

Date_Dep  18.61%  0.81  0.77  0.82  0.77  0.81  0.03 

Weathers  17.71%  0.82  0.78  0.82  0.77  0.82  0.02 

WDD  17.80%  0.82  0.78  0.82  0.77  0.82  0.02 

IDD  18.98%  0.81  0.76  0.83  0.79  0.81  0.03 

IWDD  15.73%  0.84  0.80  0.85  0.81  0.84  0.00 
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