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Résumé

Les changements de 1'état phénologique des plantes sont des indicateurs importants
dans la recherche agronomique. Cependant, la difficulté de collecter des données
phénologiques a grande échelle est un défi actuel. L'utilisation conjointe
d'informations spectrales provenant d'images satellites et de données
météorologiques prétraitées apparait comme une réponse a ce défi.

Par conséquent, I'objectif principal de ce travail est d'ajuster et d'évaluer différents
modeles pour prédire les phases phénologiques a 1'aide de données satellitaires et de
produits météorologiques. Un jeu de données pour 8 phénophases collectées dans la
base de données Vigicultures® au cours de la saison agricole 2017 a été construit
pour des parcelles de colza réparties sur 'ensemble du territoire francais. Nous avons
ajusté les modeles statistiques en utilisant les méthodes de Machine Learning (ML) les
plus couramment utilisées pour classer les informations catégorielles, telles que le
Lasso-Multinomial, le Random Forest et le KNN. La qualité des modeles a été estimée a
'aide de leurs matrices de confusion et de leur accuracy globale. Les résultats obtenus
ont montré un potentiel variable pour coupler les indices dérivés des produits de
télédétection avec les variables météorologiques. Les stades de culture sont estimés
avec ces modeles en s’appuyant sur plusieurs sources de données : les données
spectrales Sentinel 2, des données météorologiques (modele SAFRAN de
Météo-France) et des données spatio-temporelles. Avec le modele de référence
mobilisant données météorologiques et spectrales, nous avons obtenu une accuracy
de 0,84 avec presque uniquement des inversions entre stades voisins. Nous avons
étudié 'impact de modifications de ce modeles ainsi que I'impact des différentes
variables sur la qualité de la prédiction. Nous avons constaté qu'une bonne
prédiction des stades phénologiques intermédiaires est principalement liée aux
données météorologiques, tandis que pour les états printaniers (floraison), il y a une
forte importance des indices spectraux tels que le NDYI. La prise en compte des
variables spatio-temporelles n’améliorent que marginalement le modele de référence.
La diversité des sources d'information est plus importante que les pré-traitements
avant de les fournir au modele de Random Forest. Bien que le modele de référence ne
soit pas destiné a remplacer les observations in situ, il peut aider au processus de
prise de décision.

Mots clés : Phénologie, Machine Learning, classification, Random Forest, Colza,
Brassica Napus, Copernicus, Sentinel-2, modélisation des cultures, changement
climatique.
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Abstract

Changes in the phenological state of plants are important indicators in agronomic
research. However, the difficulty of collecting phenological data on a large scale is a
current challenge. The joint use of spectral information from satellite images and
pre-processed meteorological data appears to be a response to this challenge.

Therefore, the main objective of this work is to adjust and evaluate different models
to predict phenological phases using satellite data and meteorological products. A
dataset for 8 phenophases collected in the Vigicultures® database during the 2017
agricultural season has been built for rapeseed plots spread over the whole French
territory. We fitted the statistical models using the most commonly used Machine
Learning (ML) methods to classify categorical information, such as
Lasso-Multinomial, Random Forest and KNN. The quality of the models was
estimated using their confusion matrices and overall accuracy. The results obtained
showed a variable potential for coupling indices derived from remote sensing
products with meteorological variables. Crop stages are estimated with these models
using several data sources: Sentinel 2 spectral data, meteorological data
(Météo-France's SAFRAN model) and space-time data. With the reference model
using meteorological and spectral data, we obtained an accuracy of 0.84 with almost
only inversions between neighboring stages. We have studied the impact of
modifications of this model as well as the impact of different variables on the quality
of the prediction. We found that good prediction of intermediate phenological stages
is mainly related to meteorological data, while for spring states (flowering) there is a
strong importance of spectral indices such as NDYI. Taking into account
spatio-temporal variables only marginally improves the reference model. The
diversity of information sources is more important than pre-processing before
providing it to the Random Forest model. Although the reference model is not
intended to replace in-situ observations, it can assist in the decision-making process.

Keywords: Phenology, Machine learning, classification, Random Forest, rapeseed,
Canola, Brassica napus, Copernicus, sentinel-2, Crop modeling, Climate change.
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Introduction

Contexte Général

Chaque année, le CNES (Centre National d'Etudes Spatiales) lance un appel a
propositions de recherche aupres des laboratoires spatiaux pour le développement de
themes issus de la télédétection des surfaces terrestres. Le projet
TOSCA-PARCELLE est le résultat d'un de ces appels dont l'utilisation d'images
satellites est I'élément principal. Ce projet vise a promouvoir les efforts pour unifier
et capitaliser la chaine de traitement de iota2 (Infrastructure pour I'Occupation des
sols par Traitement Automatique).

A l'origine, iota2 a été concu comme un flux de travail de classification pour la
cartographie de l'occupation des sols a grande échelle, mais la polyvalence de
'algorithme permet également d'effectuer des extractions d'informations spectrales
dans toute la France a 1'échelle de la parcelle agricole qui nous intéresse ici.

L'utilisation des informations spectrales extraites de 1'utilisation de Iota2 permet a
I'Institut National de Recherche pour I'Agriculture et I'Environnement (INRAE) et a
I'Institut des Sciences et Industries du Vivant et de I'Environnement AgroparisTech
de co-construire avec les agriculteurs 1'avenir d'une agriculture plus durable.

Au sein de 1'Unité Mixte de Recherche (UMR) en agronomie, I'équipe de recherche
crée des outils d'aide a la décision. Les outils congus visent notamment a améliorer le
controle biologique des bio-agresseurs afin de réduire l'utilisation des produits
phytosanitaires.

C'est dans ce contexte que s'inscrit ce stage, dont I'objectif est d'établir un modele de
classification des stades phénologiques des cultures agroalimentaires. Cela nous
permettra de comprendre comment la présence de bioagresseurs a certains stades du
développement des plantes peut affecter le rendement final des cultures.

La surveillance des différents stades de développement des cultures est appelée
phénologie (Beurs et Henebry 2005). La phénologie a été abordée scientifiquement a
partir de différentes échelles spatiales. Au niveau des parcelles, il existe des
méthodologies in situ pour déterminer les stades phénologiques exacts des cultures
(van Vliet et al. 2003). A 1'échelle locale, l'utilisation de vecteurs aériens (UAV)
équipés d'instruments de mesure (caméras spectrales), permet d'analyser Ia
végétation a une plus grande échelle sans compromettre 'accuracy des informations
qui alimentent les modeles (Berra, Gaulton, et Barr 2019). A 1'échelle régionale et
mondiale, l'utilisation d'instruments d'observation a distance facilite 1'analyse de
vastes zones (foréts et champs) pour déterminer les tendances et les réactions des
cultures a différentes variables telles que le changement climatique, la qualité des
sols et la présence de stress, entre autres (Heumann et al. 2007; Han et al. 2018;
Brown et al. 2008).
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Analyse phénologique en agriculture

En agriculture, 'analyse a distance du cycle phénologique des cultures est un outil
essentiel pour, entre autres, déterminer le rendement et la réponse des champs aux
variables externes, en particulier a la pression des ravageurs et des maladies des
cultures. L'incursion de la télédétection dans 'agriculture a permis de considérer des
effets spécifiques extrapolés a des réalités plus larges avec moins d'investissement de
ressources (X. Zhang, Friedl, et Schaaf 2009; Wardlow et Egbert 2008). L'étude de la
phénologie des plantes par télédétection a été largement discutée dans la littérature,
car le lancement de satellites équipés de capteurs capables d'exploiter 1'énergie
réfléchie par les surfaces terrestres a permis d'analyser le comportement de la
végétation soit sur la base de sa chlorophylle, soit de sa structure ou de sa capacité de
rétention d'eau pour en déduire son état phénologique (X. Zhang, Friedl, et Schaaf
2009).

Télédétection et phénologie

Des capteurs tels que le MODIS a bord des satellites américains Acqua et Terra ont
été largement utilisés a cette fin (Fisher et Mustard 2007; Ahl et al. 2006). Cependant,
c'est actuellement la mission européenne Sentinel, avec sa famille de satellites et ses
améliorations d'instruments, qui fournit des images satellites a haute résolution dans
I'espace et le temps (Jonsson et al. 2018; Vrieling et al. 2018). Du point de vue de la
télédétection, l'estimation conventionnelle des mesures phénologiques est
généralement faite a partir de séries temporelles. Cette estimation comporte
généralement trois étapes principales : 1) le nettoyage des données et I'établissement
de rapports ; 2) le lissage des données et la reconstruction des séries temporelles; et 3)
I'extraction des mesures phénologiques générées a partir des données des séries
temporelles reconstruites (Zeng et al. 2020).

Apprentissage automatique et phénologie

Il existe également d'autres approches basées sur la complémentarité ("couplage")
entre différents types de données (Almeida et al. 2014). Ces approches peuvent établir
des modeles prédictifs des différentes étapes d'un phénomene en utilisant des outils
d'intelligence artificielle tels que le Machine Learning (ML) dont le Deep Learning (DL)
fait partie afin d'identifier des modeles (Czernecki, Nowosad, et Jabloriska 2018).

Dans le cadre de ce stage, nous analyserons la contribution des informations
spectrales, climatologiques et spatio-temporelles a la prédiction des états
phénologiques des cultures d'importance agro-écologique. Nous aborderons cette
question de recherche en utilisant des outils de classification avec des méthodes
d'apprentissage automatique. Nous déterminerons l'évolution de chaque stade
phénologique d'une campagne de colza dans des parcelles réparties sur l'ensemble
du territoire francais.

Dans un premier temps, nous extrairons les informations spectrales des 10 bandes
Sentinel-2, calculerons les indices spectraux et évaluerons leur potentiel de

Elvia Julieth Arellano Ortiz 8
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classification au stade de la floraison, puis nous couplerons les données
météorologiques aux informations spectrales et enfin nous utiliserons des méthodes
d'apprentissage automatique telles que la régression logistique de pénalités
multinomiales (LASSO), les K- Nearest Neighbors (KNN) et la Random Forest (RF)
pour déterminer la contribution des variables thématiques a la détermination des
patrons dans les données.

Dans ce cas d'application, ['utilisation des méthodes d'apprentissage automatique,
nous permettra de connaitre la contribution de la télédétection a la gestion durable
des bioagresseurs dans les cultures de grande importance agroalimentaire, en
déterminant la combinaison appropri€e de variables pour la classification des états
phénologiques du colza (Brassica napus L.).

Elvia Julieth Arellano Ortiz 9
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1. Matériels et Méthodes

La méthodologie est divisée en 3 étapes. La premiere section décrit les bases de
données utilisées pour la recherche des informations utilisées. Elle présente
également les régions ou les parcelles sont situées. La deuxieme section présente les
méthodes de classification utilisées pour la détection des stades phénologiques. La
troisieme section détaille la méthodologie utilisée pour définir la contribution des
différents ensembles de variables.

1.1. Matériels
1.1.1. Données Agronomiques

Vigicultures®

Application départementale d'introduction de données épidémiologiques pour les
grandes cultures (colza, blé, tournesol, etc.) mise en oceuvre par les instituts
techniques (Arvalis, Terre Inovia, ITB) (Simonneau, Chollet, et Gouwier 2013).
Vigicultures® et la base de données VégéObs collecte des données de surveillance
épidémiologique pour obtenir des informations en temps réel sur la pression des
ravageurs sur les cultures. Cette base de données orchestrée par le ministere de
'agriculture et le ministere de I'environnement est un outil essentiel de prévention et
d'analyse des risques dans la création des Bulletins phytosanitaires (BSV). Pour notre
étude de cas, nous avons utilisé les stades phénologiques des cultures qui sont
enregistrés a chaque fois qu'une observation de ravageurs ou de maladies est faite.

Les stades phenologiques

L'état phénologique des parcelles est établi a partir d'une classification propriétaire
établie dans la base de données Vigicultures®. Pour la culture du colza, 28 stades
phénologiques ont été identifiés (Semis, A, B1, B2, B3, B4, B5, B6, B7, B8, B9, B10, >
10 feuilles, C1, C2, D1, D2, E, F1, F2, G1, G2, G3, G4 - Floraison toujours en cours,
Fin de floraison, G4 - Floraison terminée, G5 et Hors culture). Les états "Floraison
Terminée" et "Hors de Culture" ont été écartés en raison de leur ambiguité et de leur
faible nombre d'observations.

Voici un parallele des états de Vigicultures® avec 1'échelle BBCH (Biologische
Bundesanstalt, Bundessortenamt und CHemische Industrie) L'échelle BBCH décrit
les stades phénologiques des cultures en utilisant des criteres qui relient le stade de
croissance a un code décimal (Meier 2001). Le premier chiffre indique le stade de
développement principal (par exemple 6 = floraison), tandis que le deuxieme chiffre
se réfere a un stade de croissance secondaire ou au pourcentage de plantes a ce stade.

Elvia Julieth Arellano Ortiz 10
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Tableau 1. Paralléle entre Vigicultures® et 1'échelle BBCH

Echelle Vigicultures® Regroupement | Echelle
originale de ’Echelle BBCH (Meier 2001)
Vigicultures®

Semis, A A phase 0 : Germination, germination, développement des
bourgeons.

B1, B2, B3, B4, B5, B6 B1-B6 phase 1: Développement des feuilles (tige principale).

B7, B8, B9, B10, B7 - B10> phase 2 : Formation de pousses latérales / (tallage).

> 10 feuilles

C1,C2 C phase 3 : Croissance de la tige longitudinale ou de la
rosette, développement des pousses (germes)/racines (tige
principale).

D1, D2 D phase 4 Développement des parties végétatives
récoltables de la plante ou des organes végétatifs de
multiplication/encastrement.

E E phase 5 : Emergence de I'inflorescence (tige principale).

F1, F2, G1, G2, G3, G4 - | F-G phase 6 : Floraison (tige principale).

Floraison toujours en

cours, G4 - Floraison

terminée, G5 phase 7 : Développement du fruit.
phase 8 : Coloration ou maturation des fruits et des
graines.

NA NA phase 9 : La sénescence.

Registre Parcellaire Graphique (RPG)

Base de données géographiques utilisée comme référence pour I'évaluation des aides
de la politique agricole commune européenne (PAC). La version anonyme contient
des données graphiques des parcelles (depuis 2015) avec leur récolte principale. Ces
données sont produites par I'Agence des services et des paiements (SPA) depuis 2007.
La réutilisation du RPG est gratuite pour toutes les utilisations, y compris

commerciales, selon les termes de la "licence ouverte"'.

! https://www.data.gouv.fr/

Elvia Julieth Arellano Ortiz

1

11



https://www.zotero.org/google-docs/?zUXeRY

| Universite IN RA@ Prédiction statistique des stades du colza

de Paris . . . . i .
(Brassica Napus L.) a partir de données météorologiques et
d’observations satellitaires

Identification des parcelles d'intérét

Registre

Vigicultures® parcellaire
graphique (RPG)

PointsToParc.R
» PointsToParcCheck.R -«

|

Parcelles d'interet
(ROT)

Fig. 1. Schéma général du prétraitement des données agronomiques

Parcelles de Colza d'interét pour I'étude @

¢ Parcelles
[1 Régions de la France

100 0 100 200 300 400 km
L1 1 | | | |

EPSG: 2154, RGF93/ Lambert-93

Fig 2. Cartes des parcelles d’intérét en France
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A partir de la base de données Vigicultures®, les informations sur les parametres
agricoles (type de culture, état phénologique observé, département, etc.) liés a un
point GPS sont extraites et fusionnées avec les informations relatives a la parcelle
enregistrée dans la base de données RPG. Les polygones résultants ont délimité les
régions d'intérét (ROI) pour une analyse ultérieure a l'aide d'images satellites et de
variables climatiques.

1.1.2. Données Spectrales

Sentinel-2

Le réseau de satellites optiques Sentinel-2 (2A et 2B) fait partie de la famille des
satellites d'observation terrestre a distance du projet spatial européen. Depuis juin
2015, les images multispectrales permettent d'analyser le développement et le cycle
de croissance des plantes a l'échelle mondiale. Avec 13 bandes spectrales a haute
résolution spatiale (4 bandes a 10m, 6 bandes 4 20m et 3 bandes a 60m) et un temps de
revisite de 5 jours, son application en agriculture est I'une des plus documentées
(Zhang, Friedl, et Schaaf 2009).

Transformation de l'information spectrale

Parcelles d'interet
(ROI)

LectureSQLITE.R
gestion_tuiles_polygone.R
keep_only_FRE_files.R
Extract_Img_S2Al1.R
Extract_infoSubtiles.R
DataSpectrallnrae.R
DataSpectralGEEIota2.R

Jeu de donneées Jeu de donnees
spectrales spectrales
Iota2 Inrae

Fig 3. Diagramme général de prétraitement des informations spectrales de Sentinel-2

L'information spectrale est obtenue a partir de deux méthodologies différentes. Dans
les deux méthodologies, les tuiles Sentinel-2 de niveau 2A ont été téléchargées a

Elvia Julieth Arellano Ortiz 13
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partir du centre de données terrestres Theia® (Hagolle [2016] 2020). Les acquisitions
correspondent a la saison de récolte 2017 (entre le ler juillet 2016 et le 25 aott 2017).

Dans la premiere méthodologie, I'extraction des données spectrales a été réalis€e en
utilisant iota2 (Inglada et al. 2016) et MAJA (MACCS*-ATCOR* Joint Algorithm)
développés par le Centre National d'Etudes Spatiales (CNES) et le Centre d'Etudes
Spatiales de la Biosphere (CESBIO) d'une part, et le Centre Aérospatial Allemand
(DLR) d'autre part. Les images sont orthorectifiées, corrigées atmosphériquement
sans nuages et avec détection des ombres (Baetens, Desjardins, et Hagolle 2019).
Toutes les acquisitions ont €té ré-échantillonnées pour combler les lacunes laissées
par les nuages et les ombres (tous les 10 jours, a partir du 2016-07-01 et jusqu'au
2017-08-25). Les 10 bandes utilisées de S2 (B2, B3, B4, B5, B6, B7, BS, BSA, B11 et B12)
sont récupérées a une résolution spatiale de 10 et 20 metres sans processus de
rééchantillonnage.

Dans la deuxieme méthodologie, les acquisitions ont été effectuées a I'aide de 1'outil
SEN2COR (Muller-Wilm 2012). Les 10 bandes sont présentées sous deux formes :
une forme, la Réflectance de surface corrigée pour les effets atmosphériques et
environnementaux (SRE_Bx.tif), une autre forme, la Réflectance plane qui est en
outre corrigée pour les effets de pente (FRE_Bx.tif)>. Nous travaillerons avec les
données S2 L2A en utilisant le produit FRE_Bx.tif. Les bandes ont €té extraites dans
leur résolution d'origine puis transformées a 10 metres en utilisant pour définir la
nouvelle valeur des pixels la méthode du plus proche voisin.

Dans les deux cas, les parcelles d'intérét récupérées dans les bases de données
agronomiques sont associées aux informations spectrales des tuiles liées a leur
localisation géographique. Les images satellites sont sélectionnées a partir de la
date d'observation des différents stades phénologiques. Cette sélection vise a ce que
la différence entre la date d'observation de 1'état et la date de I'information spectrale
soit comprise entre 0 et 5 jours avant |'observation in-situ.

Indices spectraux

Des bandes spectrales ont été utilisées pour obtenir les indices spectraux considérés
comme pertinents pour l'analyse des états phénologiques en agriculture. Dans les
tableaux suivants, nous présentons les bandes spectrales et les indices utilisés dans
cette étude de cas.

2 https://theia.cnes.fr

® Multi-sensor Atmospheric Correction and Cloud Screening software (MACCS)

* Atmospheric Correction software (ATCOR)

5 https://labo.obs-mip.fr/multitemp/sentinel-2/theias-sentinel-2-12a-product-format/
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Tableau 2. Bandes spectrales Sentinel-2 utilisées

Nombre Résolution Longueur d’Onde Description
B2 10 metres 496.6nm (S2A) / 492.1nm (S2B Bleu

B3 10 metres 560nm (S2A) / 559nm (S2B) Vert

B4 10 metres 664.5nm (S2A) / 665nm (S2B) Rouge

B5 10 metres 703.9nm (S2A) / 703.8nm (S2B) Red Edge 1

B6 20 metres 740.2nm (S2A) / 739.1nm (S2B) Red Edge 2

B7 20 metres 782.5nm (S2A) / 779.7nm (S2B) Red Edge 3

B8 20 meétres 835.1nm (S2A) / 833nm (S2B) Proche Infrarouge
BSA 20 metres 864.8nm (S2A) / 864nm (S2B) Red Edge 4

B11 20 metres 1613.7nm (S2A) [ 1610.4nm (S2B) SWIR 1

B12 20 metres 2202.4nm (S2A) / 2185.7nm (S2B) SWIR 2

Tableau 3. Indices spectraux utilisés et leurs formules

Indices Formule pour Sentinel-2 Source
Normalized
Difference Vegetation _ B8+ B4
Index (NDVI) ND V] = m (ROUSG et al. 1973)
Green Normalized
Difference Vegetation _ B8-B3 (Gitelson, Kaufman,
Index (GNDVI) GNDVI = B8 + B3 et Merzlyak 1996)
Normalized
Difference Water _  B3—BS§
Index (NDWI) NDWI = B3 + BS (Gao 1996)
Normalized
Difference Yellow NDYI[ = % (Sulik et Long 2016)
Index (NDYI)
Normalized
Difference Moisture NDM[ = % (Sykas 2019)
Index (NDMI)
Enhanced Vegetation — B8-B4 .
Index (E%’I) EVI 2.5 [ B8 + 6B4 — 7.5B2+1 ] (Liu et Huete 1995)
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Structure Insensitive _ B8-B2
Pigment Index (SIPI) SIPI = B8 + B4 (Sykas 2019)
Soil Adjusted BS —B4
Vegetation Index SA Vi = (Huete 1988)
(SAVI) 1.428 (B8 + B4 +0.428)
Atmospherically B8 —2B4 +B2 (Tanre, Holben, et
Resistant Vegetation AR VI = ’ )
Index (ARVI) B8 +2B4 + B2 Kaufman 1992)

Advanced Vegetation
Index (AVI)

AVI = [B8 * (1 — B4) * (B8 —B4)]"”

(Roy, Sharma, et
Jain 1996)

Bare Soil Index (BSI)

(B11 + B4) — (BS + B2)

BSI = (B11+ B4) + (BS + B2)

(Sykas 2019)

Moisture Stress Index MSI = Bl1 (Rock, Williams, et
(MSI) S B3 Vogelmann 1985)
Tasseled Cap

En plus des indices spectraux mentionnés ci-dessus, les informations spectrales
obtenues ont été transformées a partir de la méthodologie "Tasseled Cap".

Kauth, R. J. et Thomas, G. S. (1976) ont imaginé une transformation de l'information
des bandes spectrales pour maximiser l'information contenue dans les nouveaux
€léments d'analyse. Il s'agit d'une méthode de compression permettant de réduire de
multiples données spectrales, en l'occurrence 6 bandes, en trois néo-canaux, qui
permettent de comprendre d'importants phénomenes de développement des cultures
dans l'espace spectral (Kauth et Thomas 1976). Les néo-canaux obtenus apres la
transformation sont les suivants :
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Tableau 4. Néo-canaux Tasseled Cap

Indices Formule pour Sentinel-2 Utilisation
Brightness® a2
— B32 Associé aux
Index BI = 2 variations de la

réflectance du sol.

Greenness’” |  Greenness = (-0.2848B2)+(-0.2435B3)+(-0.5436B4) | Corrélationavecla

vigueur de la

+0.7243B8+0.0840B11+(-0.1800B12) végétation.

Wetness’® Wetness = 0.1509B2+0.1973B3+0.3279B4 nfluence pat fes
+0.3406B8+(-0.7112B11)+(-0.4572B12) Moyen et lié &
I'humidité des

plantes et du sol.

1.1.3. Données météorologiques

AgroClim

AgroClim est une unité au service de la communauté INRAE. Cette unité gere le
réseau agroclimatique national de I'INRAE et la base de données correspondante. Sa
fonction est d'assurer la tracabilité des observations dépendantes du climat.
AgroClim est également le point d'entrée unique des unités INRAE pour obtenir des
données météorologiques de Météo-France”’.

Les données utilisées sont le produit du modele de données climatologiques
développé par Météo-France, SAFRAN (Systeme d’Analyse Fournissant des
Renseignements Atmosphériques a la Neige). Safran travaille sur des régions
climatiquement homogenes. Ces régions ont une forme irréguliere, leur surface est
normalement inférieure a 1 000 km” Dans chaque région homogene, Safran estime la
variation de 8 parametres climatiques (tableau 5 ci-dessous) pour chaque classe
d'altitude de 300 m, a partir de toutes les données climatiques disponibles (postes
méteéorologiques, mais aussi des analyses des modeles de prévision du temps a
grande échelle comme le modele ARPEGE de Météo-France) (Lemaire 2015). Les
analyses de température, humidité, vitesse du vent et nébulosité sont produites
toutes les 6 heures. L’analyse des précipitations est faite au pas de temps journalier.
Apres avoir obtenu les valeurs pour les zones, 'analyse est interpolée spatialement
sur une grille réguliere de 8 km x 8 km.

¢ https://[foodsecurity-tep.net/S2_BI

7 https://www.indexdatabase.de/search/?s=tasselled+cap
8 https://www.indexdatabase.de/search/?s=tasselled+cap
? https://wwwé.paca.inrae.fr/agroclim/
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Tableau 5. Données spatialisées par le modele Safran de Météo - France (Lemaire 2015)

sol (en g.kg-1);

(en m/s)

4. Précipitations solides (en mm)

5. Précipitations liquides (en mm)

6. Rayonnement infrarouge/solaire (en J/cm?)
7. Rayonnement atmosphérique (en J.cm-2)
8. Evapotranspiration potentielle (ETP mm),
formule de Penman-Monteith

3. Force moyenne du vent a 10 m au-dessus du sol

Données disponibles Période Résolution de la maille
1. Températures minimales, maximales et
moyennes a 2 m au-dessus du sol (en °C) ;
2. Humidité relative moyenne a 2 m au-dessus du 1958 8 km x 8 km

a aujourd’hui

Transformation des informations météorologiques

Parcelles d'interet
(ROI)

Make_data_clim_stades
Safran_function_stades.R
GetWeather.R

jeux de données
climatiques

Fig. 4. Schéma général de prétraitement des bases de données météorologiques.

Pour cette étude, nous avons pris en compte toutes les variables climatologiques
obtenues par le modele SAFRAN. Nous avons ajouté une autre variable, le degré jour
de croissance (gdd), qui est étroitement liée a 1'évolution phénologique des cultures.
Le calcul de cette variable est basé sur la formule suivante:

GDD = (Tmax +

Tmin) /2 — Tbhase

Nous utilisons la température base de 5° selon (Morrison, McVETTY, et Shaykewich
1989) et la fonction gdd() du paquet de pollen'®, basée sur (Baskerville et Emin 1969).

10 https://cran.r-project.org/web/packages/pollen/vignettes/gdd.html
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Les données départementales quotidiennes des stations météorologiques les plus
proches des parcelles d'intérét ont €té regroupées par semaine. La prédiction des
états a été faite avec les informations climatologiques des 52 dernieres semaines a la
date d'observation in situ. Cette décision est basée sur I'hypothese empirique que les
variations des conditions météorologiques pendant au moins 10 mois peuvent avoir
un impact sur la croissance des plantes, du semis a la récolte. En outre, les
informations météorologiques sont une approximation des informations temporelles
qui pourraient étre utiles pour déterminer s'il est temps de planter, puisque les
variations de température, par exemple, permettent a un modele comme Random
Forest de trouver des oscillations dans le signal. Si I'on considere les défis que le
changement climatique actuel pose au processus de modélisation, cette
identification de la saison a un avantage sur la date d'observation car elle permet
d'adapter la météorologie a une période spécifique de I'année, ce qui permet d'ajuster
le modele a d'autres régions et d'autres années. D'autre part, du point de vue du
prétraitement des données, si nous extrayons 10 mois pour un état phénologique, il
est cohérent de le faire pour tous les autres, afin d'avoir le méme nombre de variables
indépendantes par classe.

Construction de l'ensemble de données final

Jeu de données
spectrales
iota2/Inrae

Jeu de données
climatiques

Jeu de données
agronomiques

getDataInputModel.R

v

Jeu de données
Final

Fig. 5. Schéma général pour la construction de 1'ensemble de données final

Les données climatologiques ont été fusionnées avec les informations agronomiques
et spectrales correspondant a l'identifiant unique de chaque parcelle d'intérét. A la
fin du prétraitement, I'ensemble de données suivant a été obtenu :

Tableau 6. Composition finale de 'ensemble des données pour les modélisations

Nb de parcelles Nb de variables Nb d'observations

561 519 3033
28 spectrales
491 climatiques
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1.2. Méthodes

1.2.1. Méthodes de classification utilisées

Lasso Multinomial (GLM)

En 1996, Tibshirani a développé le LASSO (Least Absolute Shrinkage and Selection
Operator) qui est une méthode qui réduit a zéro le coefficient de régression des
variables les moins impactantes. Associ€ a une validation croisée, il permet d'obtenir
le niveau d'impact approprié et donc de faire une sélection de variables. L'idée est
que la méthode LASSO minimise la somme des carrés résiduels pour lesquels la
somme des estimations (coefficients) n'est pas supérieure a une certaine constante
(Efendi et Ramadhan 2018). En d'autres termes, le LASSO limite I'estimation 4 moins
d'une certaine constante (dans ce cas, nous utilisons lambdalse), de sorte que
certaines estimations sont nulles.

Pour prédire les variables catégorielles multiples, l'utilisation du modele logit
multinomial dans l'analyse de régression pour les réponses de plusieurs catégories
non ordonnées est la plus utilisée (Tutz, P6{inecker, et Uhlmann 2015). La régression
multinomiale est une extension de la régression logistique binomiale. L'algorithme
nous permet de prédire une variable catégorielle dépendante qui a plus de deux
niveaux (Hosmer et Lemeshow 1989). Comme tout autre modele de régression, la
variable obtenue en sortie du modele multinomial peut étre prédite en utilisant une
ou plusieurs variables indépendantes. Les variables indépendantes peuvent étre
nominales, ordinales ou continues.

Pour faire cette analyse multinomiale LASSO, nous utilisons le paquet glmnet pour
ajuster le modele de référence. Le modele permet de déterminer les variables les plus
importantes dans la classification des états phénologiques.

Régression logistique multinomiale (MLR) - Réseaux de neurones

Le MLR applique une transformation logarithmique non linéaire qui permet de
calculer la probabilité d'occurrence d'un nombre quelconque de classes d'une
variable dépendante sur la base de variables explicatives. Contrairement aux modeles
de régression linéaire qui utilisent les moindres carrés comme critere, les
coefficients du MLR sont généralement estimés en utilisant la probabilité maximale
(Jeune et al. 2018).

Pour cette modélisation, nous utilisons le paquet nnet pour faire correspondre le
modele multinomial a un réseau de neurones.

Régression logistique ordinale (ORL)

Un des modeles statistiques les plus appropriés pour l'analyse des données avec une
variable de réponse catégorielle est le modele de régression logistique (Efendi et
Ramadhan 2018). La régression logistique ordinale est une extension du modele de
régression logistique simple. Dans la régression logistique simple, la variable
dépendante est catégorique et suit une distribution de Bernoulli. Dans la régression
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logistique ordinale, la variable dépendante est ordinale, c'est-a-dire qu'il y a un ordre
explicite dans les catégories (Ananth et Kleinbaum 1997).

Le modele de régression logistique ordinal prend en compte l'ordre de la variable
dépendante catégorielle en utilisant les événements cumulatifs pour le calcul du
logarithme des probabilités (Ananth et Kleinbaum 1997). Cela signifie que,
contrairement a la régression logistique simple, les modeles logistiques ordinaux
considerent la probabilité d'un événement et de tous les événements en dessous de
I'événement focal en une hiérarchie ordonnée.

Dans cette étude de cas, une fois la variable catégorielle des états phénologiques
ordonnée, la régression logistique ordinale a été utilisée pour prédire les états en
fonction des variables indépendantes. Cela nous permettra de déterminer lesquelles
de nos variables indépendantes (le cas échéant) ont un effet statistiquement
significatif sur notre variable dépendante. Le paquet utilisé dans R était ordinal.

Random Forest (RF)

Les “foréts aléatoires” (Random Forest) sont une combinaison d'arbres de décision.
Dans cette méthode de classification, chaque arbre dépend des valeurs d'un vecteur
aléatoire échantillonné indépendamment, avec la méme distribution pour tous les
arbres de la forét (Breiman 2001). L'erreur de généralisation pour les foréts converge
vers une limite a mesure que le nombre d'arbres dans la forét augmente. L'erreur de
généralisation d'un classificateur d'arbres forestiers dépend de la force des arbres
individuels de la forét et de la corrélation entre eux (Boulesteix et al. 2012).

Le Random Forest est un algorithme tres intéressant pour la gestion des
informations spectrales et le couplage avec d'autres variables (comme les variables
climatiques, par exemple) (Mufioz et al. 2018). Il présente des caractéristiques telles
qu'un fonctionnement efficace avec des jeux de données de grande taille, la capacité
a identifier des relations non linéaires entre les prédicteurs et la réponse, et a traiter
des variables prédictrices fortement corrélées (Kithnlein et al. 2014).

L'algorithme génere une estimation interne non biaisé€e de 1'erreur de généralisation
(erreur OOB) et a la capacité de déterminer quelles variables sont importantes dans
la classification (Breiman 2001).

Les paquets utilisés dans R étaient RandomForest et Caret. Dans la classification des
stades phénologiques, le modele du Random Forest a été paramétré avec 500 arbres.

k-Nearest Neighbors (kNN)

L'algorithme de classification kNN est devenu une méthode importante dans
I'exploration de données et le ML depuis qu'il a été proposé en 1967 (Deng et al.
2016). Pour appliquer la méthode traditionnelle kNN a de grands volumes de
données, les méthodologies peuvent souvent étre classées en deux parties, d’'un coté
trouver rapidement les échantillons les plus proches, ou sélectionner des
échantillons représentatifs (ou éliminer certains échantillons) pour réduire
'estimation kNN (Zhu, Zhang, et Huang 2014).
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Le k-NN est un algorithme de classification standard basé exclusivement sur le choix
des mesures de classification. Il est "non-paramétrique". Seul le k, qui est le nombre
de voisins a partir duquel les estimations sont €tablies, doit étre fixé. K est une
valeur entiere spécifiée par l'utilisateur. Le choix optimal de la valeur dépend
largement des données. En général, une valeur plus élevée supprime les effets du
bruit, mais rend les résultats de la classification moins précis.

Dans cette étude de cas, I'algorithme a été utilisé dans R a partir du paquet Caret'’,
en déterminant comme méthode de controle la validation croisée avec 10 plis (10

folds).

1.2.2. Détection de la floraison

Comme premier test, une premiere classification binaire de la phase de floraison a
été effectuée. Nous avons utilisé un modele basé sur la capacité prédictive des
indices spectraux. La méthode utilisée était le Random Forest et elle a été ajustée
pour les stades phénologiques regroupés en 2 classes. Les classes de floraison que
nous opposons aux autres sont F1, F2, G1, G2, G3, G4 - Floraison toujours en cours.

1.2.3. Conditions de référence

Le modele de référence est construit en considérant les états phénologiques en
fonction des variables climatologiques et spectrales (figure 6 ci-apres). L'ensemble de
données spectrales utilisé est le résultat de la chaine de traitement iota2 (premiere
méthodologie d'extraction).

1 https://cran.r-project.org/web/packages/caret/caret.pdf
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Etats ~ Climat + Spectral
Ou:
Climat = Température minimale
Température moyenne
Température maximale
Précipitation
Evapotranspiration
Vitesse moyenne du vent
Rayonnement solaire
Degré jour de croissance (gdd)
Humidité relative

Spectral = Normalized Difference Vegetation Index (NDVI)
Normalized Difference Water Index (NDWI)
Green Normalized Difference Vegetation Index (GNDVI)
Normalized Difference Yellow Index (NDY]I)
Normalized Difference Moisture Index (NDMI)
Enhanced Vegetation Index (EVI)
Advanced Vegetation Index (AVI)
Soil Adjusted Vegetation Index (SAVI)
Moisture Stress Index (MSI)
Bare Soil Index (BSI)
Atmospherically Resistant Vegetation Index (ARVI)
Structure Insensitive Pigment Index (SIPI)

Fig. 6. Modele de référence

Les conditions de référence sont établies comme ligne de base pour évaluer et/ou
améliorer la classification en fonction du couplage ou non d'autres variables
thématiques. Cette base de référence est établie pour tester la variation d'une
variable a la fois et non pas de toutes les combinaisons de variables.

Le probleme de recherche est divisé en questions spécifiques dont on cherche les
réponses en modifiant une variable a la fois a partir de ces conditions de référence.
La sélection des conditions de référence est basée sur l'expérience de 1'équipe de
travail et sur le soutien universitaire :

v L'algorithme Iota2 est une chaine de traitement pour la production
opérationnelle de cartes de I'occupation des sols a partir de séries temporelles
d'images de télédétection en utilisant une classification supervisée(Inglada et
al. 2016; Fauvel et al. 2020). Sa polyvalence et son niveau d'accuracy lui
permettent d'étre utilisé dans une vari€té de contextes.

v L'utilisation d'indices spectraux en agriculture a été l'une des méthodes
d'analyse la plus populaire au cours des trois dernieres décennies (Bolton et
Friedl 2013). En particulier, les indices de végétation normalisés tels que le
NDVI ont été largement utilisés en raison de leurs avantages interprétatifs
pour améliorer la discrimination entre le sol et la végétation, réduisant |'effet
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du relief sur la caractérisation spectrale des différentes couvertures terrestres
(Islam et Bala 2008; Bolton et Friedl 2013).

v L'algorithme Random Forest (RF) est une méthode de classification moins
sensible a la qualité des échantillons d'entrainement et au surajustement (par
rapport a d’autres méthodes). Ces avantages sont dus au grand nombre
d'arbres de décision produits par la sélection aléatoire d'un sous-ensemble
d'échantillons de formation (Belgiu et Dragut 2016). De plus, il s'agit d'une
méthode déja utilisée par 1'équipe de recherche dans laquelle ce travail est
inscrit.

v La sélection des variables climatiques et spectrales dans le but de rendre le
modele reproductible a différentes échelles spatiales et dans différents lieux
géographiques est une stratégie de généralisation pour la modélisation future.

v Les états phénologiques regroupés en 8 classes rendent la tache de classification
plus précise. Dans ce cas d'étude, l'imprécision des données in-situ et la
limitation temporelle des informations spectrales et climatiques (une
observation par semaine) ne permettent pas de distinguer correctement les 26
états. En définitive, l'intérét agronomique de cette classification se concentre
sur les états les plus représentatifs de la culture.

1.2.4. Comparaison des modeles

Nous avons ajusté différents modeles de classification pour les 8 états phénologiques
groupés enregistrés (voir tableau 1). Nous comparons ensuite ces modeles avec le
modele de référence (conditions de référence).

Dans un premier temps, nous avons ajusté le modele de référence a partir des quatre
méthodes de classification sélectionnées pour cette étude de cas (Lasso multinomial,
Régression logistique ordinale, Random Forest et K-Nearest Neighbor). Ensuite,
nous avons évalué les quatre méthodes en fonction de l'accuracy et du temps de
calcul. Enfin, nous avons sélectionné Random Forest.

L'idée était ensuite de créer des modeles qui cherchent a déterminer la pertinence
et/ou l'importance des groupes de variables (spectrales, climatologiques et
spatio-temporelles) pour l'identification des états phénologiques. Nous avons évalué
le potentiel prédictif des variables thématiques de maniere isolée, en considérant des
modeles dans lesquels, a partir d'un seul groupe de variables, les états pouvaient étre
identifiés avec precision. Dans ce cas, les modeles suivants ont été utilisés :
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Etats ~ Bandes spectrales

Etats ~ Indices spectraux

Etats ~ Tasseled Cap
Etats ~ Climat

Etats ~ Espace-Temps*

Fig. 7. Modeles individuels de classification. *Date de 'observation in-situ, département

Nous avons ensuite analysé le potentiel des indices spectraux avec les données
interpolées sur dix jours (iota2) et les données non interpolées (INRAE). Enfin, nous
avons couplé les variables spectrales, climatiques et spatio-temporelles pour
déterminer le potentiel de classification global.

Etats ~ Indices spectraux + Espace-Temps
Etats ~ Climat + Espace-Temps

Etats ~ Indices spectraux + Climat + Espace-Temps

Fig. 8. Modeles couplés de classification

L'évaluation des différents modeles de classification a été réalisée sur la base de leurs
matrices de confusion et des mesures suivantes :
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Tableau 7. Mesures d’évaluation des modeles

d’observations satellitaires

Mesure Formule Concept
zl: i+ m; Ll'efficacllcité riloye?ne par
Average Accuracy —_— classe d'un classificateur
i+ fn; + fp.+ in;
(Sokolova et i=1 P Sni ¥ Jpit in;
Lapalme 2009) [

Pour chaque classe i, #p; sont des vrais positifs,
Jp; - des faux positifs, fn; - des faux négatifs, et
tn; - des vrais négatifs, respectivement.

Coefficient
kappa de Cohen
(McHugh 2012)

_ »,~p)
k=)

p,est la probabilité empirique d'accord sur
I'étiquette attribuée a wun échantillon (la
proportion d'accord observé), et p, estl'accord
attendu lorsque les deux correcteurs attribuent
des étiquettes au hasard. p, est estimé en
supposant une attribution aléatoire des
étiquettes de classe.

Le coefficient kappa est un
nombre compris entre -1 et
1. Les coefficients supérieurs
a 08 sont généralement
considérés comme un bon
accord ; zéro ou moins
signifie qu'il n'y a aucun
accord (étiquettes
pratiquement aléatoires).

Out-of-bag (OOB)
error
(Hastie,
Tibshirani, et
Friedman 2009)

Random Forest est entrainé en utilisant l'agrégation bootstrap, ou chaque
nouvel arbre est ajusté a partir d'un échantillon bootstrap des observations
d'entrainement Z; = (x;,y;) . L'erreur out-of-bag (OOB) est l'erreur moyenne
calculée en utilisant les prédictions des arbres qui ne contiennent pas leur
échantillon bootstrap respectif. Cela permet au Random Forest de s'ajuster et

de se valider pendant l'entrainement.
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2. Résultats

Les étapes phénologiques de la Vigicultures® déterminées in situ sont établies sous
forme d'étiquettes de classification. Les stades observés in-situ sont la variable
dépendante a prédire. Les profils spectraux Sentinel-2 (S2) sont moyennés pour
chacune des 561 parcelles étudiées. Dans la premiere section, nous effectuons une
classification binaire (présence ou absence de fleurs) pour I'état de floraison avec la
méthode Random Forest, en ne considérant que les informations spectrales. Dans la
section 2.2, nous évaluons les cinq méthodes de classification sélectionnées en
termes d’accuracy et de temps de calcul. Le modele de référence est la base de cette
évaluation. Dans la section 2.3, nous effectuons des classifications en tenant compte
du couplage entre les variables spectrales, climatologiques et spatio-temporelles sur
la base du modele de référence. Nous évaluons le potentiel prédictif de chacun des
modeles a partir des mesures résultant des matrices de confusion. Enfin, nous
analysons l'impact de deux facteurs dans la classification : le regroupement des états
phénologiques et la création d'un sous-ensemble de données équilibrées.

2.1. Classification binaire de l'état de floraison avec la méthode
Random Forest

Modele de floraison

Nous avons effectué une analyse préliminaire pour déterminer la capacité prédictive
des variables spectrales (indices) a réaliser une classification binaire de 1'état de
floraison (présence ou absence de fleurs).

Floraison ~ Indices spectraux
Ou:
Indices spectraux = Normalized Difference Vegetation Index (NDVI), Normalized Difference Water
Index (NDWI), Green Normalized Difference Vegetation Index (GNDVI), Normalized Difference
Yellow Index (NDYI), Normalized Difference Moisture Index (NDMI), Enhanced Vegetation Index,
Advanced Vegetation Index, Soil Adjusted Vegetation Index, Moisture Stress Index (MSI), Bare Soil
Index, Atmospherically Resistant Vegetation Index, Structure Insensitive Pigment Index

Fig. 9. Modele de Floraison
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Selon le graphique, les données sont
déséquilibrées. Sur 6494
observations, nous en avons 1376
(21%) au stade de la floraison et 5118
(79%) qui ne le sont pas. Ce
déséquilibre dans les données est da
au fait que nous ne confrontons
qu'un stade a tous les autres.

Fig. 10. Distribution des observations pour
les classes binaires (Fleur - pas de fleur)

Les résultats du modele de classification sont présentés ci-dessous :
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Fig 11. (a gauche) Matrice de confusion. (a droite) Importance des variables

La matrice de confusion nous montre la difficulté du modele a déterminer
correctement l'état de floraison lorsque les données sont déséquilibrées. Pour cet
état, le taux de faux positifs (éléments inexactement classés comme fleuris) est
important, cependant le modele est correct dans 72,41% des cas pour la floraison

(voir tableau 8 ci-dessous).

Tableau 8. Matrice de confusion binaire

Elvia Julieth Arellano Ortiz

Prédictions

Classes 0 1
0 95.52% 4.48%
1 27.59% 72.41%
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Quant aux variables qui expliquent le mieux le modele, les indices spectraux tels que
l'indice de stress hydrique (MSI), l'indice Normalized Difference Yellow Index
(NDYI) et l'indice Normalized Difference Water Index (NDWI) sont ceux qui
expliquent le mieux la présence ou l'absence de fleurs dans les observations
analysées.

Les parametres d'évaluation du modele nous montrent que pour les données de
formation, 'OOB est inférieur a 10%. L’accuracy et le coefficient kappa sont

respectivement de 0,91 et 0,71. Pour l'ensemble de validation, 'accuracy diminue de 1
% et le kappa de 3 %.

2.2. Classification multi-états

2.2.1. Stades phénologiques groupés (8 Etats)

1000 -

750-

500 -

Nb d'observations

250~

(o] N N (9] N
s & & o 4o “ §© ©°
L o m  wd L -
m ) O @] =
(a8}
Stades

Fig. 12. Distribution des observations pour les stades phénologiques groupés

L'ensemble de données est déséquilibré et le nombre d'observations pour chaque état
differe de maniere observable (fig. 12 ci-dessus). Cependant, les stades phénologiques
moins représentatifs (SA, D1-D2 et E) font |'objet de plus de 90 observations chacun.
Les stades tels que B1-B6, B7-B10> et C1-C2 sont plus représentés avec environ 500
observations. Pour le stade F1-F2, il y a environ 250 observations. Enfin, pour le
stade final G recueille le plus d’observations de loin (plus de 1000). Comme
I'observation des stades est extraite de Vigicultures®, on pourrait considérer que le
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nombre élevé d'observations pour les stades finaux de développement du colza est da
a la présence d'un plus grand nombre de bioagresseurs dans cette période
phénologique. Par conséquent, l'identification de ces stades est de grande
importance pour notre problématique.

2.2.2. Modeles statistiques (comparaison des méthodes de classification)

Nous nous demandons si 'une des cinq méthodes de classification considérées
pourrait mieux prédire les états phénologiques des observations in-situ. Pour cela,
nous nous sommes sur les conditions de références (voir fig. 6, 3029 observations et
428 variables). Cet ensemble de données sera décomposé de maniere aléatoire en
deux ensembles le premier d'entrainement et le second de test, respectivement de
70% et 30% des observations. Les figures 13, 14, 16, 18 et 20 illustrent les matrices de
confusion obtenues dans l'ensemble de données de test pour chacun des
classificateurs.

Lasso Multinomial (GLM)

Nous avons utilisé€ le Lasso dans son mode multinomial et les résultats de I'ensemble
de tests sont présentés sur la figure 13 ci-dessous. La matrice de confusion nous
montre comment se détaille Paccuracy globale de 85%. On observe que les classes les
mieux prédites par le modele sont les classes B1-B6 (76,0%), B7-B10> (85,21%), C1-C2
(96,79%) et G (96,71%). Les erreurs entre les classes se produisent entre classes
voisines dans le temps (I'état d’avant ou d’apres 1'état observé), a 1'exception d'une
observation classée F1-F2, alors que sa véritable classe est D1-D2. On observe
également que plus le nombre d'observations est faible, plus les classes voisines ont
tendance a étre confondues, en revanche, les deux classes qui ont le plus grand
nombre d’observations, G et C1-C2 sont les mieux prédites. La classe SA est
confondue avec B1-B6 et dans le cas de D1-D2, le modele la prédit comme C1-C2.

SA-
B1-B6-
B7-B10>-

C1-C2-

D1-D2-

F1-F2-

SA  B1:B6 B7-B10> C1:.C2 D1'D2 E FIF2 G
Predictions

Fig. 13. Matrice de confusion pour le classificateur MLR - Lasso Multinomial pour 1'ensemble de test
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Le LASSO nous permet de déterminer le nombre de variables qui expliquent le
modele a partir du coefficient lambda en évitant le sur-ajustement (s€lection de
variables). Pour notre étude, la figure 14 indique la fréquence de sélection de chaque
variable sur I'ensemble des 8 stades. Les précipitations (des premiéres semaines) et
I'humidité relative (des dernieres semaines) sont les variables les plus sélectionnées.
Cependant, des indices spectraux tels que le GNDVI, le MSI et I'EVI sont aussi
présents. Ces indices liés a la présence d'humidité et a la teneur en chlorophylle de la
plante nous permettent de conclure que la réaction de la plante a certaines
conditions hydriques définit adéquatement 1'état phénologique de la plante.

pr_14
pr_6
GNDVI
pr_12
pr_11
pr_10
MSI
Moisture
HR_42
HR_41
HR_3
HR_22
HR_10
EVI

Variables

0 1 2 3 4
Frequence de la variable par stade

Fig. 14. Importance des variables explicatives du modele MLR - Lasso Multinomial

Régression logistique ordinale (OLR)

SA-
B1-B6-
B7-B10>-
C1-C2-

D1-D2-

F1-F2-

SA B1.B6 B7-B10> C1:C2 D1-D2 E F1-F2 G
Predictions

Fig. 15. Matrice de confusion pour le classificateur OLR dans 'ensemble de test

Elvia Julieth Arellano Ortiz 31



| Universite IN RA@ Prédiction statistique des stades du colza

de Paris . . . . iy .
(Brassica Napus L.) a partir de données météorologiques et
d’observations satellitaires

Nous avons décidé de classer les états a partir d'un modele ordinal étant donné le
caractere séquentiel des états phénologiques (un état précede 1'autre). Les résultats
de la matrice de confusion sont proches du modele multinomial. L’ accuracy par
classe diminue pour les classes les mieux prédites par le classificateur précédent.
Dans ce modele, nous observons les accuracy suivantes : B1-B6 (62,67%), B7-B10>
(76,06%), C1-C2 (90,38%) et G (95,39%). Cependant, dans les états ou le nombre
d'observations est faible (SA, D1-D2 et E), le modele confond moins les classes
voisines. Cependant, le modele présente des erreurs plus graves car il intervertit es
classes plus distantes que le modele précédent : il classe les observations des états
avec une distance interclasse de deux (D1-D2 comme F1-F2, par exemple). Si
I'ordonnancement des catégories phénologiques aurait da améliorer la précision, il
est possible que le passage d’une régression LASSO a une régression logistique plus
simple pénalise le modele aboutissant a une accuracy (79%) nettement inférieur a
celle du modele précédent.

Multinomial Logistic Regression (MLR) - Réseaux de neurones

L'analyse de la matrice de confusion (fig. 16 ci-apres), montre des différences par
rapport a la modélisation LASSO multinomiale dans la reconnaissance des états
analysés un par un, méme si l'accuracy globale est encore acceptable (83%). On
observe que les classes les mieux prédites par Lasso diminuent lorsqu'on utilise des
réseaux de neurones (B1-B6 (68,67%), B7-B10> (83,10%), C1-C2 (95,51%) et G (96,71%)).
Le modele tend a confondre les classes plus facilement, méme lorsqu'elles ne sont
pas voisines. Cette difficulté rend le modele, malgré sa bonne accuracy, moins
efficace que le Lasso. Nous concluons que dans cette classification avec des données
non équilibrées, les réseaux de neurones ajustent le modele de maniere proche méme
si légerement inférieure, au modele utilisé LASSO multinomial.

B1-B6-
B7-B10>-
C1-C2-

D1-D2-

F1-F2-

G- 294

SA  B1Be B7-B10> C1.C2 D1D2 E F1F2 G
Predictions

Fig. 16. Matrice de Confusion classificateur MLR - Lasso pour ’ensemble de test
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BSI
rv_23
rv_33
rv_41
rv_20
rv_29
rv_21
rv_32
rv_24
rv_44
rv_8
rv_28
rv_22
rv_13
rv_30
0.000 0.001 0.002 0.003
Coef.Lambdalse

Variables

Fig. 17. Importance des variables explicatives du modele MLR

Sur la figure 17 ci-dessus, on peut voir que les variables sélectionnées par le modele
pour classer les états phénologiques, sont le BSI (Bare Soil Index) ou les bandes B2,
B4, B8 et B11 sont concernées, ainsi que la variable climatique Rayonnement Solaire
au milieu de l'année précédant la date d'observation in situ de 1'état. Nous avons pu
conclure que le modele classifie en fonction des conditions d'absence et/ou de
présence de la végétation (indice BSI) et de la réponse spectrale du colza a I'intensité
du rayonnement solaire.

Random Forest (RF)

Nous avons utilisé un classificateur non linéaire pour déterminer si cette méthode

représentait une amélioration de l'accuracy de la prédiction des états phénologiques.
Les résultats sont présentés ci-dessous dans la matrice de confusion.

SA-

B1-B6-

B7-B10>-

C1-C2-

D1-D2-

F1-F2-

SA  B1B6 B7-B10> C1.C2 D1D2 E F1F2 G
Predictions

Fig. 18. Matrice de confusion pour le classificateur Random Forest dans |'ensemble de test
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Nous constatons que les résultats sont comparables a ceux des méthodes linéaires
ajustées ci-dessus. La similarité est grande avec la classification multinomiale par
LASSO. Avec une accuracy globale de 84%, nous avons constaté que pour les classes
ou les observations sont peu nombreuses, le classificateur continue a confondre la
classe cible avec ses voisines immédiates (SA, D1-D2, E et F1-F2) et il n’y a que 2
erreurs avec des classes non immédiatement voisines. Toutefois, pour les classes
mieux identifiées, les résultats continuent d'étre adéquats. Pour les états B1-B6
(74,00%), B7-B10> (87,32%), C1-C2 (93,59%) et G (96,71%). Nous concluons que le type
d'approche (linéaire ou non linéaire), n'affecte pas de maniere drastique les résultats
de la classification.

tn_10
tn_9
tn_8
gdd_9
tm_9
gdd_11
gdd_12
tm_10
tm_34
tx_9
Moisture
tm_12
rv_30
tn_7
gdd_10

Variables

0 10 20
Overall

Fig. 19. Importance des variables explicatives du modele RF

Lorsque 1'on observe I'importance des variables sélectionnées par le modele, on peut
conclure que ce sont les variables climatiques qui déterminent la classification d'une
observation dans un état ou un autre, les plus pertinentes dans la méthode Random
Forest étant les températures (minimales et moyennes), le degré jour de croissance
(gdd) de la fin du premier trimestre et le rayonnement solaire au milieu de I'année
précédant l'observation in-situ. Des indices spectraux évaluant I'humidité du sol et le
stress hydrique des plantes completent le top 16 des variables les plus importantes
pour la classification par ce modele.

k-Nearest Neighbors (kNN)

Nous avons ajusté un modele non paramétrique basé sur les distances (euclidiennes)
afin de déterminer si l'accuracy des résultats de cette approche était comparable aux
modeles précédents.

Dans la matrice de confusion de ce modele (fig. 20 ci-dessous), nous continuons a
voir des résultats proches de ceux des modeles précédents. L’accuracy globale était
proche du Lasso Multinomial (83,4%), une seule observation classifiée a plus d'une
classe de distance (D1-D2) et une classification tres précise dans les états B1-B6
(71,33%), B7-B10 (82,39%), C1-C2 (94,87%) et G (95,72%) est une méthode intéressante
pour l'identification des états phénologiques. Les Etats ayant peu d'observations
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continuent a avoir un nombre important de faux positifs. Nous concluons qu'avec le

choix d'un classificateur simple, on obtient des résultats similaires a ceux de modeles
plus complexes.

SA-

B1-B6-

B7-B10>-

C1-C2-

D1-D2-

F1-F2-

SA  B1'B6 B7-B10> C1.C2 D1'D2 E FI1F2 G
Predictions

Fig. 20. Matrice de confusion pour le classificateur k-Nearest Neighbor dans I'ensemble de test

Enfin, nous pouvons conclure qu'en ajustant cinq modeles, chacun avec une
approche différente, les classificateurs convergent vers des résultats proches. Les
classes les mieux prédites étaient les classes C1-C2 et G. Elles présentent un bon
nombre d'observations in-situ et de schémas climatiques et/ou spectraux qui
permettent de les classer facilement sans obtenir d'erreurs importantes.

Dans le tableau suivant, nous observons en résumé les cinq classificateurs testés. si
les valeurs d’accuracy sont similaires avec un maximum pour le Lasso Multinomial,
les temps de calcul pour ce modele plus complexe sont aussi beaucoup plus
important que pour les autres. En revanche, le modele Random Forest est celui qui a
le temps d’estimation le plus faible tout en conservant une excellente capacité
prédictive ce qui nous amene a confirmer notre choix du modele Random Forest
pour la suite de nos investigations sur le role des différentes variables explicatives.

Tableau 9. Accuracy et temps de calcul pour les modéles évalués

Méthode Accuracy Temps de Calcul (s)
Lasso - Multinomial 85.4% 1200
Mliltinomial Logistic Regression 83.4% %
- réseaux de neurones
Ordinal Logistic Regression 79,6% 60
Random Forest 84,2% 18
k-Nearest Neighbors 83,4% 60
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2.3. Comparaison de modeles basés sur différents types de variables
prédictives.

2.3.1. Pré-traitements des bandes Spectrales (sur extraction iota2)

Dans l'exercice de détermination des variables les plus significatives pour prédire le
changement d'état phénologique du colza, nous avons voulu identifier si la
classification a partir de différentes transformations de l'information spectrale
(Bandes, Indices et Tasseled Cap) pouvait améliorer le modele de référence. Nous
avons comparé l'accuracy et 'OOB de chacune des transformations spectrales ainsi
que le taux de réussite de la classification par classe dans les données
d’entrainement.

TassCap TassCap
Indices Indices
BaseLine BaselLine
Bandes Bandes
00 0.2 04 06 0.3 0.0 0.1 0.2 0.3 0.4
Accuracy OO0B

Fig. 21. Accuracy et OOB de chaque modele spectral (ensemble d'entrainement)

Dans la figure 21, pour le Tasseled Cap, une OOB de 0,42, une accuracy de 0,68 et un
kappa de 0,59 le positionnent comme le moins performant. Pour les bandes
spectrales et les indices, les mesures d'évaluation sont proches. Avec un OOB de
0,33, une accuracy et un kappa de 0,68 et 0,59 respectivement, le choix entre les
indices et les bandes est réduit a des raisons pratiques, comme la facilité
d'interprétation dans le cas des indices ou la simplicité de mise en oeuvre pour les
bandes.

En comparant l'accuracy des modeles spectraux avec le modele de référence
(Baseline), on observe une différence de 16% pour les bandes et de 26% pour Tasseled
Cap. Les variables spectrales classifient environ 70% des observations, cependant le
modele de référence (indices + climat) continue d'étre le meilleur classificateur (84%).
L'ajout de données climatiques aux données spectrales fournit un grand nombre
d'informations.

En observant le tableau suivant, nous pouvons apprécier le pourcentage de réussite
des modeles spectraux pour chaque état, dans I'ensemble de formation.
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Tableau 10. Pourcentage d'occurrences de chaque modele pour chaque état phénologique
Modele SA B1-B6 B7-B10 C1-C2 D1-D2 E F1-F2 G
Bandes 55.56% 67.01% 54.58% 62.19% 10.00% 29.17% 42.94% 85.69%
Indices 28.79% 71.79% 50.30% 76.99% 0.00% 15.87% 41.25% 89.73%
TassCap 16.67% 73.50% 23.80% 60.55% 1.33% 12.70% 36.25% 82.70%
BaseLine | 54.55% 77.21% 82.53% 95.62% 49.33% 49.21% 71.88% 95.36%

Code couleurs : le jaune correspond aux meilleures classifications. Le bleu correspond aux secondes
meilleures classifications.

Le modele de référence offre une meilleure classification pour tous les états
phénologiques sauf pour le premier. La deuxieme place est en général atteinte par le
modele qui considere les 10 bandes spectrales. Le modele des indices spectraux suit
de pres celui des bandes, cependant dans les états ou le nombre d'observations est
faible, il tend a confondre les états objectifs avec les classes voisines. Le modele
Tasseled Cap ne dépasse les deux précédents que dans I'état B1-B6. Il semble possible
de classer les états exclusivement a partir d'informations spectrales mais il est
pour affiner la

important de considérer la contribution d'autres variables

classification.

2.3.2. Focus sur les images récentes (iota2-inrae) - Méthodes d’extraction

Afin d'analyser l'impact de la méthodologie d'extraction des informations spectrales,
nous avons effectué une classification a partir des indices spectraux pour les deux
ensembles de données (iota2 et inrae).

L’accuracy des classifications de la méthodologie iota2 est de 0,68 par rapport a la
méthodologie inrae qui est de 0,62. Comme pour I'OOB, iota2 identifie les classes
avec une réduction de 5% par rapport a l'inrae.

Indices_lota2

Indices_Inrae

BaselLine

0.0

0.2 04

0.6

Accuracy

0.8

Indices_lota2

Indices_Inrae

BaselLine

0.0

0.1

0.2
O0OB

0.3

Fig. 22. Accuracy et OOB de chaque méthodologie d’extraction (ensemble d'entrainement)

Lorsque l'on compare les deux classifications en fonction du taux de réussite par
classe, on constate que iota2 est le meilleur. Les classes B1-B6, B7-B10, C1-C2 et G,
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qui présentent un nombre important d'observations (ensemble d'entrainement : 351,
332, 365 et 711 observations respectivement), sont les états les mieux prédits par le
modele. Dans les deux cas, le modele ne trouve pas de patron pour classifier 1'état
D1-D2.

Pour les deux ensembles de données, 1'état D1-D2 est confondu avec I'état C1-C2 (40
% des observations sont classées dans la classe précédente). Dans 1'échelle BBCH, les
deux états correspondent au développement des feuilles (rosette) et des organes
végétatifs qui, étant si proches, sont difficiles a différencier uniquement avec des
informations spectrales.

Tableau 11. Pourcentage d'occurrences de chaque modele pour chaque état phénologique

Modelo SA B1-B6 B7-B10 | C1-C2 D1-D2 E F1-F2 G

Indices_Iota2 | 28.79% | 71.79% 50.30% 76.99% 0.00% 15.87% 41.25% 89.73%

Indices_Inrae | 31.82% | 64.67% 36.75% 72.33% 0.00% 14.29% 38.75% 86.36%

BaseLine 54.55% | 77.21% 82.53% 95.62% 49.33% 49.21% 71.88% 95.36%

Code couleurs : le jaune correspond aux meilleues classifications. Le bleu correspond aux secondes
meilleures classifications.

Nous pouvons conclure que l'utilisation de la chaine de traitement iota2 présente de
meilleurs résultats en I'état actuel de la chaine Inrae.

2.3.3.  Variables climatiques vs. Variables Spatio-Temporelles

Pour déterminer si les variables climatiques sont plus prédictives que les variables
spatio-temporelles, nous avons comparé les deux modeles en nous basant sur les
conditions de référence.

Les graphiques montrent des résultats tres proches. Avec une accuracy de 0,81 et un
kappa de 0,77 pour les variables spatio-temporelles contre une accuracy de 0,82 et
0,78 pour les variables climatiques, la principale différence est que 1'OOB est
légerement supérieure pour le classificateur Date_Dep (0,19 contre 0,18).

Weather Weather
Date_Dep Date_Dep
BaselLine BaseLine
0.0 0.2 0.4 0.6 0.8 0.00 0.05 0.10 0.15
Accuracy O0OB

Fig 23. Accuracy et OOB des modeles basés sur les variables climatologiques et spatio-temporelles
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Au niveau de Paccuracy par classe, les états B1-B6, B7-B10, C1-C2 et G présentent les
meilleures prédictions.

Tableau 11. Pourcentage d'occurrences de chaque modele pour chaque état phénologique

Modele SA B1-B6 B7-B10 | C1-C2 D1-D2 E F1-F2 G

Date_Dep | 40.91% 76.64% 74.70% 97.81% 38.67% 31.75% 54.37% 97.61%

Weather 51.52% 72.36% 74.70% 95.89% 48.00% 46.03% 71.45% 95.64%

BaseLine | 54.55% 77.21% 82.53% 95.62% 49.33% 49.21% 71.88% 95.36%

Code couleurs : le jaune correspond aux meilleues classifications. Le bleu correspond aux secondes
meilleures classifications.

L'analyse des variables climatiques et spatio-temporelles continue a étre, en général,
légerement moins efficace que le modele de référence au moment de la prédiction.
Cependant, des états tels que C1-C2 et G sont mieux classés par des variables
spatio-temporelles. Nous concluons qu'aprées le modele de référence, ce sont les
variables climatiques qui permettent le mieux de classer les états phénologiques du
colza, mais la perte d’accuracy due a la non utilisation de l'information spectrale est
faible. De méme, l'ensemble des dates et des départements fournit une accuracy
souvent comparable a celle des informations météorologiques, méme si pour des
stades précis et important comme celui de la floraison, il I'utilisation des variables
climatiques induit une différence importante (54.37% - 71.88%)

2.3.4. Combinaison d’information de différentes variables thématiques

Nous nous interrogeons sur le fait que la combinaison de différentes variables
thématiques dans un seul modele puisse améliorer la classification des états
phénologiques. Nous avons construit des combinaisons qui combinent deux
variables thématiques et excluaient la troisieme (climat + espace-temps et indices
spectraux + espace-temps), pour finalement combiner les trois (climat + indices +
espace-temps) et comparer leurs performances avec l'accuracy et les mesures OOB.

La figure 24 ci-dessous montre une accuracy assez proche entre les différents
modeles. Les modeles dans lesquels nous avons utilisé les informations
spatio-temporelles couplées aux variables spectrales ont obtenu une accuracy de 0,81,
mais lorsque nous avons couplé les variables spatio-temporelles aux variables
climatiques, 1'accuracy a augmenté de 1%. En revanche, lorsque nous avons couplé les
trois ensembles de variables thématiques dans un seul modele (WIDD : Climate +
Spectral Indices + Date + Département), nous avons obtenu une accuracy trés proche
de celle du modele de référence mais avec une erreur de classification plus
importante (0,156 contre 0,157).
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WIDD WIDD
Weather_DateDep Weather_DateDep
Indices_DateDep Indices_DateDep
BaseLine Baseline
00 02 04 06 08 0.00 0.05 0.10 0.15
Accuracy o0oB

Fig 24. Accuracy et OOB des modeles basés sur les combinaisons de variables spectrales, climatologiques et
spatio-temporelles

Enfin, en comparant le taux de réussite de la classification pour chacune des classes,
nous observons que dans certains €tats phénologiques, il existe des modeles qui
classent mieux ou que les résultats sont égaux au modele de référence. Dans des
classes telles que B7-B10 ou F1-F2, le modele WIDD prédit les classes dans 82,53% et
71,88% des cas respectivement. En revanche, dans les classes telles que C1-C2,
D1-D2, E et G, les meilleurs résultats sont répartis dans les trois modeles. Nous
pouvons conclure que le couplage entre les différentes variables nous offre une
amélioration de la prédiction des états individuels mais que le modele choisi comme
référence est toujours un bon modele étant pour tous les stades soit le meilleur soit le
deuxieme meilleur modele (et de peu).

Tableau 12. Pourcentage d'occurrences de chaque modeéle pour chaque état phénologique

Modelo SA B1-B6 B7-B10 | C1-C2 D1-D2 | E F1-F2 G

Weather_DateDep [ 53.03% [ 70.94% | 74.40% | 95.39% |[49.13% | 50.80% [ 71.36% | 95.20%

Indices_DateDep | 45.45% |76.07% |79.82% |96.44% | 14.67% |25.40% | 63.12% | 96.22%

WIDD™" 51.52% | 76.92% | 83.13% |[96.34% |52.00% |47.62% |70.04% | 95.14%

BaseLine 54.55% | 77.21% | 82.53% [ 95.62% |49.33% |49.21% |71.88% [ 95.36%

Code couleurs : le jaune correspond aux meilleues classifications. Le bleu correspond aux secondes
meilleures classifications.

De plus, nous avons vu que les variables climatiques ont le plus grand poids dans la
classification des états phénologiques. Nous concluons que, bien que les modeles
précédents offrent des résultats proches du modele de référence, celui-ci est le plus
polyvalent pour les classifications dans lesquelles on veut prédire sans dépendre des
variables de temps et d'espace et ainsi étendre le spectre d'utilisation a d'autres lieux.

2WIDD = Weather + Indices +DateDep
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2.4. Impact du regroupement et du rééchantillonnage

2.4.1. Impact du regroupement des états phénologiques (26 états)

Histogramme des classes

300 -

Nb d'observations

100 -
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=10 feuilles

Gd - Floraison terminée

G4 - Floraison toujours en cours

Stades

Fig 25. Distribution des observations pour les stades phénologiques non groupés

Lorsque nous examinons le nombre d'observations de chacun des états non groupés,
nous constatons une forte variabilité. Les états phénologiques tels que C1, C2, G1 et
G4-Floraison terminée sont les plus représentatifs. D'autre part, les états
minoritaires tels que les Semis, B1, D1 et D2 avec un nombre d'observations inférieur
a 50, présentent un grand défi pour les classificateurs utilisés. Nous nous
interrogeons sur le fait qu'un ensemble de données fortement déséquilibré puisse
étre bien classé en utilisant les conditions de référence et la méthode du Random
Forest.

La figure 26 ci-apres montre la comparaison des matrices de confusion pour les états
groupés et non groupés. On observe que pour les états initiaux (a gauche), le modele
confond la classe cible avec jusqu'a 8 classes différentes (état B3), cependant ces 8
classes sont toutes considérées comme voisines dans le modele a 8 classes et les
erreurs sont largement concentrées dans les classes les plus voisines. A partir de
'état C1, le nombre de vrais positifs augmente et la différenciation entre les classes
est meilleure. La qualité de classification, rapportée au modele a 8 classes peut méme
étre améliorée ponctuellement. Par exemple, I'ensemble C1-C2 ne voit que 4
confusions avec D1-D2 au lieu de 10. L’ensemble D1-D2 a toujours 8 confusions avec
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C1-C2 et augmente de 6 a 9 ses confusions avec E mais n’a aucune confusion avec le
stade plus distant F1-F2. Le stade E n’admet que des confusions avec les sous-classes
les plus proches (D2 et F1). L’ensemble F1-F2 n’a plus non plus de confusion avec le
stade distant D1-D2. Des distinctions nettes a l'intérieur des classes regroupées sont
aussi possibles dans certain cas, c’est notamment le cas du groupe tres nombreux des
observations G: L’opposition entre les trois premieres classes de G et les trois
dernieres est particulierement marquée. Dans l'ensemble, le regroupement des
valeurs autour de la diagonale est marquant et laisse supposer qu'une estimation au
niveau de la classe initiale Vigicultures resterait informative, surtout si le nombre
encore faible d’observation par classe venait a étre augmenté. Cependant, les
parametres d'évaluation chutent logiquement avec l'augmentation du nombre de
classes. Avec 26 états phénologiques, l'accuracy globale du modele est inférieure a
50% et I'erreur OOB est plus que triplée (0,15 contre 0,51).
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Fig 26. Matrices de confusion du modele de référence avec les états phénologiques groupés (en haut) et les états
non groupés (en bas)
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Nous concluons que la stratégie de regroupement nous a permis d’avoir des résultats
synthétiques probablement généralisables a un classement plus fin qui semble en
partie possible en cas de besoin.

2.4.2. Modele de référence avec stratégies de ré-échantillonnage

En raison de la difficulté que nous avons rencontrée pour prédire les classes ou le
nombre d'observations est considérablement plus faible, nous avons décidé d'évaluer
les conditions de référence dans un ensemble de données équilibré en utilisant trois
méthodes de rééchantillonnage. Nous avons d'abord €quilibré 1'ensemble des
données en effectuant un processus de sous-échantillonnage. Pour cette méthode,
nous retenons tous les cas de la classe minoritaire et choisissons au hasard un
échantillon avec le méme nombre de cas dans les classes majoritaires. Ensuite, nous
équilibrons les données par un suréchantillonnage ou nous laissons tous les cas de la
classe majoritaire, et nous augmentons le nombre de cas dans les classes
minoritaires par un échantillonnage avec remplacement. Enfin, nous utilisons la
technique SMOTE™ qui comprend a la fois le sur-échantillonnage et le
sous-échantillonnage. Pour maintenir l'utilisation des ensembles
d’entrainement/tests, nous l'avons appliquée séparément a chacun des deux
ensembles.

Les résultats présentés a la figure 27 (ci-dessous) nous permettent de déterminer que
le meilleur modele est celui qui est équilibré et qui repose sur la méthode de
'échantillonnage ascendant. Avec une accuracy de 0,98% pour I’ensemble utilisé pour
I'entrainement du modele ce modele augmente la performance de la classification
des états phénologiques de 14% par rapport au modele de référence. L'erreur de
classification est réduite de facon drastique a une valeur de 0,017 par rapport a une
valeur de 0,15 dans le modele de référence. La technique hybride SMOTE a une
accuracy de 0,88 améliorant de 4 % l'accuracy du modele de référence ainsi qu'une
OOB plus faible (0,11 contre 0,15). Cependant, l'utilisation de la technique de
sous-échantillonnage pour équilibrer 'ensemble des données en réduisant le nombre
d'observations réduira les prédictions.

Baseline_upsample Baseline_upsample

Baseline_smoted Baseline_smoted
Baseline_downsample Baseline_downsample
BaselLine Baseline
0.00 0.25 0.50 0.75 1.0C 0.00 0.05 0.10 0.15 0.20
Accuracy o0B

Fig 27. Accuracy et OOB du modele de référence avec données équilibrées

3 Synthetic Minority Oversampling Method
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Nous pourrions conclure que l'utilisation de méthodes de rééchantillonnage pour
équilibrer les données améliore considérablement la qualité de la classification avec
un investissement minimum en temps de calcul. Cependant, lors de 1'évaluation du
modele dans I'ensemble de test, nous avons constaté une diminution des parametres
d'évaluation. Pour la série d'entrainement, nous avons une accuracy de 0,98, un kappa
de 0,98 et un OOB de 2 %. Cependant, pour l'ensemble de test, nous obtenons une
accuracy de 0,73 et un kappa de 0,69 qui sont en fait inférieur a la stratégie sans
ré-échantillonnage. La stratégie de ré-échantillonnage ne semble donc pas permettre
in fine d’amélioration de la prédiction.
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3. Discussion

La nature subjective des observations phénologiques terrestres a toujours €té un
probleme dans l'étude récente de la phénologie (Czernecki, Nowosad, et Jabloriska
2018). Le développement de méthodes de classification pour identifier des modeles
d'aide a la décision dans l'analyse du comportement de la végétation d'intérét
agricole est le pilier de 1'analyse de cette problématique de recherche.

Dans l'intérét de déterminer l'importance des variables spectrales, climatiques et
spatio-temporelles dans l'identification des différents états phénologiques de
cultures telles que le colza, nous avons évalué différentes hypotheses. Au départ,
nous avons effectué une classification binaire de 1'état de floraison dans laquelle
nous avons identifié que les indices spectraux tels que le MSI, le NDYI et le NDWI
sont des éléments fondamentaux pour la classification de cet état. Les parametres
d'évaluation sont adéquats, mais l'impact sur le déséquilibre des données rend la
tache de classification difficile. Ensuite, nous avons constaté que, bien qu'en
évaluant cinq méthodes de classification, les résultats sont assez proches. Nous nous
attendions a ce que le modele OLR, qui prend en compte l'ordre hiérarchique des
classes, soit le plus précis puisqu'il est le plus proche de la réalité (il trie les
étiquettes dans un ordre d'occurrence), mais des méthodes telles que le Random
Forest se sont révélées plus performantes. D'autre part, en étudiant les différentes
possibilités de regroupement entre les variables thématiques, nous avons constaté
que les variables météorologiques sont déterminantes pour la classification et que
dans les situations ou les observations in situ ne sont pas disponibles ou sont
incohérentes, un couplage entre les indices climatiques et spectraux permet de
prédire les états phénologiques avec une accuracy de 84% avec tres peu d'erreurs
impliquant des classes tres différentes. Enfin, I'impact du regroupement des classes
pour améliorer le succes de la classification, est un outil qui permet de hiérarchiser
les états les plus importants a étudier. L'utilisation de techniques de
rééchantillonnage des données améliore I'accuracy apparente du modele de référence
mais introduit un sur-ajustement du modele qui se traduit par une différence
d'accuracy entre l'ensemble d’entrainement et I'ensemble de test proche de 25 %.

Les parametres phénologiques des images satellites multi-temporelles peuvent
indiquer le développement de la croissance des cultures dans une grande région
(Fisher et Mustard 2007; Zhong et al. 2011; Zhong, Gong, et Biging 2014; Li et al.
2014). En ce qui concerne spécifiquement la floraison, comme d’Andrimont et al.
(2020), nous avons identifié que l'indice NDYT saisit I'augmentation de la coloration
jaune des fleurs de colza dans la bande spectrale verte (B3). Le jaune des pétales de
colza est di a sa teneur en pigments caroténoides qui absorbent des longueurs
d'onde de ~450 nm (Sulik et Long 2016). Les conditions d'humidité interne
(chlorophylle ou capacité de rétention d'eau) et/ou externe (sol) sont également
importantes dans la classification. Indices tels que NDWI et MSI ou les bandes B8
(NIR), B8a (Red Edge 4) et B11 (SWIR 1) sont concernées. Le Random Forest est un
algorithme approprié pour classer les états phénologiques individuellement,

Elvia Julieth Arellano Ortiz 46


https://www.zotero.org/google-docs/?broken=Kk9ZcI
https://www.zotero.org/google-docs/?broken=Kk9ZcI
https://www.zotero.org/google-docs/?broken=6hOhU3
https://www.zotero.org/google-docs/?broken=6hOhU3
https://www.zotero.org/google-docs/?broken=MxrQsJ
https://www.zotero.org/google-docs/?broken=MxrQsJ
https://www.zotero.org/google-docs/?broken=usPSBx

| Universite INRA@ Prédiction statistique des stades du colza

de Paris . . . . i .
(Brassica Napus L.) a partir de données météorologiques et
d’observations satellitaires

cependant, des analyses ultérieures nous ont permis de généraliser le modele et de
I'appliquer a une classification multi-états.

Afin de mettre au point un outil d'aide au processus de prédiction des états
phénologiques du colza, nous avons développé une approche basée sur un modele de
référence qui sélectionne des indices spectraux et des variables climatiques pour la
prise de décision. Grace a ce modele de référence, les comparaisons visant a
déterminer le meilleur classifieur sont facilitées. Les données in-situ pour notre
étude de cas sont limitées, car I'obtention de données de terrain fiables et précises a
une échelle appropriée est un effort difficile (Fisher y Mustard 2007). L'approche
basée sur les classifications catégorielles présente des avantages lorsque la
disponibilité des données sur la réalité du terrain est limitée (Zhong et al. 2011).

Par conséquent, la décision d'évaluer les classificateurs pour comparer leurs
performances entre eux (benchmarking) permet une référence/orientation empirique
pour sélectionner les classificateurs les plus appropriés pour des problemes
spécifiques (C. Zhang et al. 2017). De la méme maniere que Lorena et al. (2011), nous
constatons que pour les études biogéographiques, le RF est une technique de
modélisation prometteuse, en raison de ses performances €élevées sur des ensembles
de données composés d'un grand nombre de variables diverses et indépendantes.
Cependant, d’autres modeles de régression multinomiale basés sur le Lasso ou des
réseaux de neurones présentent une accuracy considérablement élevée. Le compromis
entre efficacité et rapidité justifie en tout cas le choix par Inglada et al. (2016) du
Random Forest comme algorithme de référence pour la classification de 'occupation
du sol par iota2.

D'autre part, selon Zhang, Friedl, et Schaaf (2009), il a été démontré que les indices
de végétation permettent de mieux décrire la croissance des cultures et améliorent
considérablement l'accuracy de la classification des cultures. Cependant, dans notre
cas, en analysant les différentes transformations des informations spectrales, nous
avons constaté que les bandes spectrales individuelles sont des variables tout aussi
intéressantes que les indices dans des algorithmes tels que Random Forest pour
différencier une classe d'une autre parce que les arbres de décision permettent des
combinaisons de variables qui peuvent étre tout aussi intéressantes que celles
fournies par les indices spectraux. En analysant la contribution de chaque variable
explicative dans le modele final (modele de référence), on constate une influence
faible a modérée de l'information spectrale du satellite. Au contraire, les
caractéristiques météorologiques sont les plus prédictives dans le cas des stades
phénologiques de l'automne, de 1'hiver et du printemps, ce qui montre une relation
avec la température de ces périodes. L'influence de la température sur la croissance
des plantes est nettement plus importante au printemps, lorsque les plantes
commencent leur cycle de développement apres la pause hivernale (Pope et al. 2013;
Springate et Kover 2014). Cependant, en raison de sa nature cyclique, l'information
météorologique fournit également des informations sur la temporalité de
I'observation, ce qui est tres important pour l'identification de 1'étape appropriée,
comme l'indique I'efficacité des modeles avec des données spatio-temporelles.
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Dans le cadre de notre analyse, le processus de classification ne prend pas
explicitement en compte la dimension temporelle (approximation de 1'ensemble de
données en tant que série temporelle). Cependant, il existe des modeles qui integrent
la date d'observation comme variable explicative, ce qui, associé aux informations
météorologiques, pourrait donner des résultats satisfaisants en termes d’accuracy
dans des études ultérieures.

Concernant la méthodologie d'extraction des informations spectrales, lorsque
I'échelle spatiale d'analyse est élevée, la présence de nuages et d'ombres sur les
images satellites sont des situations a prendre en compte. Selon Inglada et al. (2015),
les données interpolées tendent a réduire ces inconvénients. Pour cette raison, les
résultats obtenus avec la méthodologie iota2 présentent de meilleurs résultats que la
méthodologie inrae ou 1'on ne tient pas compte de l'utilisation du masque de nuage
proposé par le produit theia. Cependant, la méthodologie inrae a l'avantage de
pouvoir étre utilisée en temps réel alors que iota2 permet ici une interpolation a
partir de I'image suivante méme si elle est prise beaucoup plus tard.

Bien que dans cette étude nous n'ayons pas effectué de regroupement statistique, la
décision de regrouper les états phénologiques en fonction de l'expertise de 1'équipe
de recherche et de la comparaison avec I'échelle BBCH, nous a permis d'obtenir un
modele d'une accuracy adéquate. Les résultats des matrices de confusion montrent
que plus le nombre de classes (états phénologiques) a prédire est élevé, plus la
variabilité et la présence de valeurs aberrantes sont importantes, ce qui tend a
diminuer l'efficacité de la tache de classification, puisque les classes sont plus
fréquemment confondues entre elles.

Malgré les lacunes de cette approche et les limites présentées par les données
satellitaires dans la modélisation de la phénologie des plantes, cette approche
pourrait encore étre en mesure de donner une approximation fiable des observations
traditionnelles au sol, notamment en ce qui concerne la fin de l'hiver (états B7-B10>
et C1-C2) et le printemps (états F1-F2 et G). Cependant, la tendance a confondre les
états voisins est une variable qui doit continuer a étre analysée dans les travaux
ultérieurs.
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4. Limites et Difficultés

Dans l'exercice de résolution de la question de recherche, le temps est I'une des
variables les plus conditionnantes, et pour cette raison, il n'a pas été possible
d'envisager toutes les possibilités de couplage entre les variables thématiques. Il se
peut qu'une combinaison non prise en compte permettra d'obtenir une meilleure
accuracy que celles obtenues dans notre analyse.

D'autre part, selon l'analyse bibliographique, 1'étude phénologique des cultures, dans
la plupart des cas, est analysée comme une série temporelle. Nous avons pris le
risque d'analyser le probleme selon une approche différente pour établir le potentiel
prédictif des variables climatiques et spectrales sans considérer explicitement la
temporalité du phénomene. L'approche conventionnelle a été adoptée dans le cadre
d’un autre stage réalisé a Toulouse au CESBIO.

La qualité de I'ensemble des données est une variable a considérer pour les analyses
futures, bien que Vigicultures® nous fournisse des informations phénologiques, son
principal objectif est le suivi épidémiologique des cultures. Si ces données ne sont
pas spécifiquement orientées vers le suivi des stades et pourraient étre imprécises,
elles offrent une opportunité unique d’ajuster un modele de prédiction a un grand
nombre de champs répartis dans toute la France.

Nous avons aussi eu deux grands types de difficultés pendant le stage. : les
difficultés du processus de recherche et les difficultés logistiques.

Les difficultés dans le processus de recherche sont principalement liées au
traitement des informations spectrales. Dans la seconde méthodologie d'extraction
(inrae, voir page 14), nous avons effectué les corrections atmosphériques mais nous
n'avons pas pris en compte le masque nuageux, faute de temps nous n’avons pas pu
ré-extraire et re-traiter les données, cependant cette tache est la plus importante
pour pouvoir comparer correctement les deux méthodologies (iota2/inrae) car
l'intérét de la méthodologie inrae est d'utiliser I'image satellite la plus récente. Cette
approche dans laquelle nous réduisons le nombre d'observations pourrait présenter
une autre difficulté en limitant la disponibilité des données satellitaires, mais elle
pourrait améliorer la pertinence de 'information utilisée.

En ce qui concerne les difficultés logistiques, le lancement d'un processus
d'apprentissage tel que celui de ce stage dans une situation de crise sanitaire
mondiale (COVID-19) rend la tache difficile a de nombreux égards, le plus important
a été les difficultées administratives dans le cadre d’'un confinement généralisé.
Toutefois, une bonne communication et des efforts conjoints ont permis de résoudre
les difficultés a temps. Cependant, cette situation atypique a permis d'ajuster les
ressources internes de chacune des parties afin que le travail a distance devient une
stratégie efficace pour l'apprentissage. Une autre difficulté logistique a été la casse
(corruption matérielle) du disque dur ou étaient stockées toutes les images satellites,
ce qui a retardé d'une semaine les processus suivants, mais cela a permis de tester et
confirmer I'efficacité de la chaine de traitement.
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Conclusion

L'intérét de notre approche de classification réside dans le fait qu'une fois les stades
phénologiques classifiés a partir du modele de référence, nous sommes en mesure
d'établir des relations entre la quantité de bioagresseurs et un stade phénologique
donné, ce qui peut aider a identifier les conséquences sur le rendement final de la
culture. Bien que l'étude ne soit pas en mesure de déterminer l'impact de ces
relations, les résultats obtenus constituent une premiere étape importante pour
continuer a développer les connaissances dans ce domaine.

L'étude et l'analyse des résultats obtenus nous ont permis de proposer un modele de
performance basé sur l'algorithme de Random Forest pour la classification des états
phénologiques du colza a partir de variables météorologiques et spectrales. Bien que
le modele ne puisse pas pleinement remplacer les observations in situ, il peut aider au
processus de prise de décision et réduire la dépendance a 1'égard du travail sur le
terrain pour obtenir des informations phénologiques, notamment lorsque sur des
données d’archives sur les bioagresseurs et les rendements les dates de changement
de stades phénologiques n’ont pas été identifiés mais que des images satellites sont
disponibles.

Les perspectives de ce travail sont formulées sur trois fronts. D'abord, analyser |'effet
d'un regroupement aléatoire d'états phénologiques sans tenir compte du
regroupement des états de Vigicultures de la classification BBCH. L'idée d'effectuer
un processus de regroupement automatique (classification non supervisée) pour
regrouper les classes dans lesquelles le modele a plus de difficultés a se différencier
pourrait étre une piste intéressante a explorer. Deuxiemement, lorsqu'il y a des
classes surreprésentées, il y a un risque que le modele en apprenne trop au détriment
des classes moins représentées. Pour éviter ce probleme, il est proposé d'approfondir
la construction d'un ensemble de données équilibré ou la composition dans chaque
état est presque identique. Enfin, il est proposé d'adapter un modele qui integre
plusieurs sous-modeles pour chaque état phénologique et d'évaluer ses résultats avec
ceux obtenus jusqu'a présent.
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Tableaux de résultats

INRAS

Prédiction statistique des stades du colza
(Brassica Napus L.) a partir de données météorologiques et
d’observations satellitaires

Annexe

des

modélisations

d'entrainement et les données de test

avec les

données

Spectral
Modele Validation P
N L .. Différence avec
Ensemble de Entrainement Test Précision .
. 0OOB s mod. de réf.
données du modele .
baseline = 0.84
accuracy | kappa | accuracy | kappa
Bandes 32.27% | 0.68 0.59 0.70 0.62 0.68 0.16
Indices 32.50% | 0.67 0.59 0.69 0.60 0.67 0.17
TassCap 52.35% | 0.58 0.46 0.60 0.49 0.58 0.26
Inrae_Iota2 (Indices)
Modele Validation P
N L. Différence avec
Ensemble de Entrainement Test Précision .
. OOB \ mod. de réf.
données du modele .
baseline = 0.84
accuracy | kappa | accuracy | kappa
Indices_lota2 | 32.5% 0.68 0.59 0.69 0.60 0.68 0.17
Indices_Inrae | 37.9% 0.62 0.52 0.65 0.56 0.62 0.22
Autres modeéles
Modele Validation cirs
N C e Différence avec
Ensemble de Entrainement Test Précision .
. 0OOB N mod. de réf.
données du modele .
baseline = 0.84
accuracy | kappa | accuracy | kappa
Date_Dep 18.61% | 0.81 0.77 0.82 0.77 0.81 0.03
Weathers 17.71% | 0.82 0.78 0.82 0.77 0.82 0.02
WDD 17.80% | 0.82 0.78 0.82 0.77 0.82 0.02
IDD 18.98% | 0.81 0.76 0.83 0.79 0.81 0.03
IWDD 15.73% | 0.84 0.80 0.85 0.81 0.84 0.00
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