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Résumé 
 
 
Les changements de l'état phénologique des plantes sont des indicateurs importants                     
dans la recherche agronomique. Cependant, la difficulté de collecter des données                     
phénologiques à grande échelle est un défi actuel. L'utilisation conjointe                   
d'informations spectrales provenant d'images satellites et de données               
météorologiques prétraitées apparaît comme une réponse à ce défi.   
 
Par conséquent, l'objectif principal de ce travail est d'ajuster et d'évaluer différents                       
modèles pour prédire les phases phénologiques à l'aide de données satellitaires et de                         
produits météorologiques. Un jeu de données pour 8 phénophases collectées dans la                       
base de données ​Vigicultures® au cours de la saison agricole 2017 a été construit                           
pour des parcelles de colza réparties sur l'ensemble du territoire français. Nous avons                         
ajusté les modèles statistiques en utilisant les méthodes de ​Machine Learning (ML) les                         
plus couramment utilisées pour classer les informations catégorielles, telles que le                     
Lasso-Multinomial​, le ​Random Forest et le ​KNN​. La qualité des modèles a été estimée à                             
l'aide de leurs matrices de confusion et de leur ​accuracy ​globale. Les résultats obtenus                           
ont montré un potentiel variable pour coupler les indices dérivés des produits de                         
télédétection avec les variables météorologiques. Les stades de culture sont estimés                     
avec ces modèles en s’appuyant sur plusieurs sources de données : les données                         
spectrales Sentinel 2, des données météorologiques (modèle SAFRAN de                 
Météo-France) et des données spatio-temporelles. Avec le modèle de référence                   
mobilisant données météorologiques et spectrales, nous avons obtenu une ​accuracy                   
de 0,84 avec presque uniquement des inversions entre stades voisins. Nous avons                       
étudié l’impact de modifications de ce modèles ainsi que l’impact des différentes                       
variables sur la qualité de la prédiction. Nous avons constaté qu'une bonne                       
prédiction des stades phénologiques intermédiaires est principalement liée aux                 
données météorologiques, tandis que pour les états printaniers (floraison), il y a une                         
forte importance des indices spectraux tels que le ​NDYI​. La prise en compte des                           
variables spatio-temporelles n’améliorent que marginalement le modèle de référence.                 
La diversité des sources d'information est plus importante que les pré-traitements                     
avant de les fournir au modèle de Random Forest. Bien que le modèle de référence ne                               
soit pas destiné à remplacer les observations in situ, il peut aider au processus de                             
prise de décision. 
 
 
 
 
Mots clés : Phénologie, ​Machine Learning​, classification, ​Random Forest​, Colza,                   
Brassica Napus​, Copernicus, Sentinel-2, modélisation des cultures, changement               
climatique. 
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Abstract 
 
 
Changes in the phenological state of plants are important indicators in agronomic                       
research. However, the difficulty of collecting phenological data on a large scale is a                           
current challenge. The joint use of spectral information from satellite images and                       
pre-processed meteorological data appears to be a response to this challenge.   
 
Therefore, the main objective of this work is to adjust and evaluate different models                           
to predict phenological phases using satellite data and meteorological products. A                     
dataset for 8 phenophases collected in the ​Vigicultures® database during the 2017                       
agricultural season has been built for rapeseed plots spread over the whole French                         
territory. We fitted the statistical models using the most commonly used Machine                       
Learning (ML) methods to classify categorical information, such as                 
Lasso-Multinomial, Random Forest and KNN. The quality of the models was                     
estimated using their confusion matrices and overall accuracy. The results obtained                     
showed a variable potential for coupling indices derived from remote sensing                     
products with meteorological variables. Crop stages are estimated with these models                     
using several data sources: Sentinel 2 spectral data, meteorological data                   
(Météo-France's SAFRAN model) and space-time data. With the reference model                   
using meteorological and spectral data, we obtained an accuracy of 0.84 with almost                         
only inversions between neighboring stages. We have studied the impact of                     
modifications of this model as well as the impact of different variables on the quality                             
of the prediction. We found that good prediction of intermediate phenological stages                       
is mainly related to meteorological data, while for spring states (flowering) there is a                           
strong importance of spectral indices such as NDYI. Taking into account                     
spatio-temporal variables only marginally improves the reference model. The                 
diversity of information sources is more important than pre-processing before                   
providing it to the Random Forest model. Although the reference model is not                         
intended to replace in-situ observations, it can assist in the decision-making process. 
 
 
 
 
 
 
Keywords​: Phenology, Machine learning, classification, Random Forest, rapeseed,               
Canola, Brassica napus, Copernicus, sentinel-2, Crop modeling, Climate change. 
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Introduction 

Contexte Général 
Chaque année, le CNES (Centre National d'Etudes Spatiales) lance un appel à                       
propositions de recherche auprès des laboratoires spatiaux pour le développement de                     
thèmes issus de la télédétection des surfaces terrestres. Le projet                   
TOSCA-PARCELLE est le résultat d'un de ces appels dont l'utilisation d'images                     
satellites est l'élément principal. Ce projet vise à promouvoir les efforts pour unifier                         
et capitaliser la chaîne de traitement de ​iota2 (Infrastructure pour l'Occupation des                       
sols par Traitement Automatique).  
 
À l'origine, iota2 a été conçu comme un flux de travail de classification pour la                             
cartographie de l'occupation des sols à grande échelle, mais la polyvalence de                       
l'algorithme permet également d'effectuer des extractions d'informations spectrales               
dans toute la France à l'échelle de la parcelle agricole qui nous intéresse ici.  
 
L'utilisation des informations spectrales extraites de l'utilisation de Iota2 permet à                     
l’Institut National de Recherche pour l'Agriculture et l'Environnement (INRAE) et à                     
l'Institut des Sciences et Industries du Vivant et de l'Environnement AgroparisTech                     
de co-construire avec les agriculteurs l'avenir d'une agriculture plus durable. 
 
Au sein de l'Unité Mixte de Recherche (UMR) en agronomie, l'équipe de recherche                         
crée des outils d'aide à la décision. Les outils conçus visent notamment à améliorer le                             
contrôle biologique des bio-agresseurs afin de réduire l'utilisation des produits                   
phytosanitaires.  
 
C'est dans ce contexte que s'inscrit ce stage, dont l'objectif est d'établir un modèle de                             
classification des stades phénologiques des cultures agroalimentaires. Cela nous                 
permettra de comprendre comment la présence de bioagresseurs à certains stades du                       
développement des plantes peut affecter le rendement final des cultures. 
 
La surveillance des différents stades de développement des cultures est appelée                     
phénologie ​(Beurs et Henebry 2005)​. La phénologie a été abordée scientifiquement à                       
partir de différentes échelles spatiales. Au niveau des parcelles, il existe des                       
méthodologies in situ pour déterminer les stades phénologiques exacts des cultures                     
(van Vliet et al. 2003)​. A l'échelle locale, l'utilisation de vecteurs aériens (UAV)                         
équipés d'instruments de mesure (caméras spectrales), permet d'analyser la                 
végétation à une plus grande échelle sans compromettre l'​accuracy des informations                     
qui alimentent les modèles ​(Berra, Gaulton, et Barr 2019)​. À l'échelle régionale et                         
mondiale, l'utilisation d'instruments d'observation à distance facilite l'analyse de                 
vastes zones (forêts et champs) pour déterminer les tendances et les réactions des                         
cultures à différentes variables telles que le changement climatique, la qualité des                       
sols et la présence de stress, entre autres ​(Heumann et al. 2007; Han et al. 2018;                               
Brown et al. 2008)​. 
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Analyse phénologique en agriculture 
En agriculture, l'analyse à distance du cycle phénologique des cultures est un outil                         
essentiel pour, entre autres, déterminer le rendement et la réponse des champs aux                         
variables externes, en particulier à la pression des ravageurs et des maladies des                         
cultures. L'incursion de la télédétection dans l'agriculture a permis de considérer des                       
effets spécifiques extrapolés à des réalités plus larges avec moins d'investissement de                       
ressources ​(X. Zhang, Friedl, et Schaaf 2009; Wardlow et Egbert 2008)​. L'étude de la                           
phénologie des plantes par télédétection a été largement discutée dans la littérature,                       
car le lancement de satellites équipés de capteurs capables d'exploiter l'énergie                     
réfléchie par les surfaces terrestres a permis d'analyser le comportement de la                       
végétation soit sur la base de sa chlorophylle, soit de sa structure ou de sa capacité de                                 
rétention d'eau pour en déduire son état phénologique ​(X. Zhang, Friedl, et Schaaf                         
2009)​. 

Télédétection et phénologie 
Des capteurs tels que le MODIS à bord des satellites américains ​Acqua et Terra ont                             
été largement utilisés à cette fin ​(Fisher et Mustard 2007; Ahl et al. 2006)​. Cependant,                             
c'est actuellement la mission européenne ​Sentinel​, avec sa famille de satellites et ses                         
améliorations d'instruments, qui fournit des images satellites à haute résolution dans                     
l'espace et le temps ​(Jönsson et al. 2018; Vrieling et al. 2018)​. Du point de vue de la                                   
télédétection, l'estimation conventionnelle des mesures phénologiques est             
généralement faite à partir de séries temporelles. Cette estimation comporte                   
généralement trois étapes principales : 1) le nettoyage des données et l'établissement                       
de rapports ; 2) le lissage des données et la reconstruction des séries temporelles; et 3)                               
l'extraction des mesures phénologiques générées à partir des données des séries                     
temporelles reconstruites ​(Zeng et al. 2020)​. 

Apprentissage automatique et phénologie 
Il existe également d'autres approches basées sur la complémentarité ("couplage")                   
entre différents types de données ​(Almeida et al. 2014)​. Ces approches peuvent établir                         
des modèles prédictifs des différentes étapes d'un phénomène en utilisant des outils                       
d'intelligence artificielle tels que le ​Machine Learning (ML) dont le ​Deep Learning (DL)                         
fait partie afin d'identifier des modèles ​(Czernecki, Nowosad, et Jabłońska 2018)​. 
 
Dans le cadre de ce stage, nous analyserons la contribution des informations                       
spectrales, climatologiques et spatio-temporelles à la prédiction des états                 
phénologiques des cultures d'importance agro-écologique. Nous aborderons cette               
question de recherche en utilisant des outils de classification avec des méthodes                       
d'apprentissage automatique. Nous déterminerons l'évolution de chaque stade               
phénologique d'une campagne de colza dans des parcelles réparties sur l'ensemble                     
du territoire français. 
 
Dans un premier temps, nous extrairons les informations spectrales des 10 bandes                       
Sentinel-2, calculerons les indices spectraux et évaluerons leur potentiel de                   
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classification au stade de la floraison, puis nous couplerons les données                     
météorologiques aux informations spectrales et enfin nous utiliserons des méthodes                   
d'apprentissage automatique telles que la régression logistique de pénalités                 
multinomiales (LASSO), les K- Nearest Neighbors (KNN) et la Random Forest (RF)                       
pour déterminer la contribution des variables thématiques à la détermination des                     
patrons dans les données. 
 
Dans ce cas d'application, l'utilisation des méthodes d'apprentissage automatique,                 
nous permettra de connaître la contribution de la télédétection à la gestion durable                         
des bioagresseurs dans les cultures de grande importance agroalimentaire, en                   
déterminant la combinaison appropriée de variables pour la classification des états                     
phénologiques du colza (​Brassica napus L.​).  
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1. Matériels et Méthodes 
 
 
La méthodologie est divisée en 3 étapes. La première section décrit les bases de                           
données utilisées pour la recherche des informations utilisées. Elle présente                   
également les régions où les parcelles sont situées. La deuxième section présente les                         
méthodes de classification utilisées pour la détection des stades phénologiques. La                     
troisième section détaille la méthodologie utilisée pour définir la contribution des                     
différents ensembles de variables.  
 

1.1. Matériels 

1.1.1. Données Agronomiques 
 

Vigicultures® 
 
Application départementale d'introduction de données épidémiologiques pour les               
grandes cultures (colza, blé, tournesol, etc.) mise en œuvre par les instituts                       
techniques (Arvalis, Terre Inovia, ITB) ​(Simonneau, Chollet, et Gouwier 2013)​.                   
Vigicultures® et la base de données VégéObs collecte des données de surveillance                       
épidémiologique pour obtenir des informations en temps réel sur la pression des                       
ravageurs sur les cultures. Cette base de données orchestrée par le ministère de                         
l'agriculture et le ministère de l'environnement est un outil essentiel de prévention et                         
d'analyse des risques dans la création des Bulletins phytosanitaires (BSV). Pour notre                       
étude de cas, nous avons utilisé les stades phénologiques des cultures qui sont                         
enregistrés à chaque fois qu'une observation de ravageurs ou de maladies est faite.  

Les stades phénologiques 
 
L'état phénologique des parcelles est établi à partir d'une classification propriétaire                     
établie dans la base de données ​Vigicultures®​. Pour la culture du colza, 28 stades                           
phénologiques ont été identifiés (Semis, A, B1, B2, B3, B4, B5, B6, B7, B8, B9, B10, >                                 
10 feuilles, C1, C2, D1, D2, E, F1, F2, G1, G2, G3, G4 - Floraison toujours en cours,                                   
Fin de floraison, G4 - Floraison terminée, G5 et Hors culture). Les états "Floraison                           
Terminée" et "Hors de Culture" ont été écartés en raison de leur ambiguïté et de leur                               
faible nombre d'observations. 
 
Voici un parallèle des états de ​Vigicultures® avec l'échelle BBCH (Biologische                     
Bundesanstalt, Bundessortenamt und CHemische Industrie) L'échelle BBCH décrit               
les stades phénologiques des cultures en utilisant des critères qui relient le stade de                           
croissance à un code décimal ​(Meier 2001)​. Le premier chiffre indique le stade de                           
développement principal (par exemple 6 = floraison), tandis que le deuxième chiffre                       
se réfère à un stade de croissance secondaire ou au pourcentage de plantes à ce stade. 
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Tableau 1. Parallèle entre ​Vigicultures®​ et l'échelle ​BBCH 

Échelle ​Vigicultures® 
originale 

Regroupement 
de l’Échelle 
Vigicultures®  

Échelle 
BBCH ​(Meier 2001) 

Semis, A  A  phase 0 : Germination, germination, développement des             
bourgeons. 

B1, B2, B3, B4, B5, B6  B1 -B6  phase 1 : ​Développement des feuilles (tige principale). 

B7, B8, B9, B10, 
 > 10 feuilles 

B7 - B10>  phase 2 :​ Formation de pousses latérales / (tallage). 

C1, C2  C  phase 3 : Croissance de la tige longitudinale ou de la                     
rosette, développement des pousses (germes)/racines (tige           
principale). 

D1, D2  D  phase 4 : Développement des parties végétatives             
récoltables de la plante ou des organes végétatifs de                 
multiplication/encastrement. 

E  E  phase 5 :​ Émergence de l'inflorescence (tige principale). 

F1, F2, G1, G2, G3, G4 -             
Floraison toujours en     
cours, G4 - Floraison       
terminée, G5 

F-G 
 

phase 6 :​ Floraison (tige principale). 

phase 7 :​ Développement du fruit. 

phase 8 : Coloration ou maturation des fruits et des                   
graines. 

NA  NA  phase 9 :​ La sénescence. 

 

Registre Parcellaire Graphique (RPG)  
 
Base de données géographiques utilisée comme référence pour l'évaluation des aides                     
de la politique agricole commune européenne (PAC). La version anonyme contient                     
des données graphiques des parcelles (depuis 2015) avec leur récolte principale. Ces                       
données sont produites par l'Agence des services et des paiements (SPA) depuis 2007.                         
La réutilisation du RPG est gratuite pour toutes les utilisations, y compris                       
commerciales, selon les termes de la "licence ouverte" . 1

1 https://www.data.gouv.fr/ 
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Identification des parcelles d'intérêt 
 

 
Fig. 1. Schéma général du prétraitement des données agronomiques 

 

Fig 2. Cartes des parcelles d’intérêt en France 
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A partir de la base de données ​Vigicultures®​, les informations sur les paramètres                         
agricoles (type de culture, état phénologique observé, département, etc.) liés à un                       
point GPS sont extraites et fusionnées avec les informations relatives à la parcelle                         
enregistrée dans la base de données RPG. Les polygones résultants ont délimité les                         
régions d'intérêt (ROI) pour une analyse ultérieure à l'aide d'images satellites et de                         
variables climatiques. 
 

1.1.2. Données Spectrales 

Sentinel-2 
Le réseau de satellites optiques Sentinel-2 (2A et 2B) fait partie de la famille des                             
satellites d'observation terrestre à distance du projet spatial européen. Depuis juin                     
2015, les images multispectrales permettent d'analyser le développement et le cycle                     
de croissance des plantes à l'échelle mondiale. Avec 13 bandes spectrales à haute                         
résolution spatiale (4 bandes à 10m, 6 bandes à 20m et 3 bandes à 60m) et un temps de                                     
revisite de 5 jours, son application en agriculture est l'une des plus documentées                         
(​Zhang, Friedl, et Schaaf 2009)​. 
 

Transformation de l'information spectrale 

 
Fig 3. Diagramme général de prétraitement des informations spectrales de Sentinel-2 

 
 

L'information spectrale est obtenue à partir de deux méthodologies différentes. Dans                     
les deux méthodologies, les tuiles Sentinel-2 de niveau 2A ont été téléchargées à                         
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partir du centre de données terrestres Theia ​(Hagolle [2016] 2020)​. Les acquisitions                       2

correspondent à la saison de récolte 2017 (entre le 1er juillet 2016 et le 25 août 2017).  
 
Dans la première méthodologie, l'extraction des données spectrales a été réalisée en                       
utilisant ​iota2 ​(Inglada et al. 2016) et ​MAJA (MACCS -ATCOR Joint Algorithm)                     3 4

développés par le Centre National d'Etudes Spatiales (CNES) et le Centre d'Etudes                       
Spatiales de la Biosphère (CESBIO) d'une part, et le Centre Aérospatial Allemand                       
(DLR) d'autre part. Les images sont orthorectifiées, corrigées atmosphériquement                 
sans nuages et avec détection des ombres ​(Baetens, Desjardins, et Hagolle 2019)​.                       
Toutes les acquisitions ont été ré-échantillonnées pour combler les lacunes laissées                     
par les nuages et les ombres (tous les 10 jours, à partir du 2016-07-01 et jusqu'au                               
2017-08-25). Les 10 bandes utilisées de S2 (B2, B3, B4, B5, B6, B7, B8, B8A, B11 et B12)                                   
sont récupérées à une résolution spatiale de 10 et 20 mètres sans processus de                           
rééchantillonnage.  
 
Dans la deuxième méthodologie, les acquisitions ont été effectuées à l'aide de l'outil                         
SEN2COR ​(Muller-Wilm 2012)​. Les 10 bandes sont présentées sous deux formes :                       
une forme, la Réflectance de surface corrigée pour les effets atmosphériques et                       
environnementaux (SRE_Bx.tif), une autre forme, la Réflectance plane qui est en                     
outre corrigée pour les effets de pente (FRE_Bx.tif) . Nous travaillerons avec les                       5

données S2 L2A en utilisant le produit FRE_Bx.tif. Les bandes ont été extraites dans                           
leur résolution d'origine puis transformées à 10 mètres en utilisant pour définir la                         
nouvelle valeur des pixels la méthode du plus proche voisin. 
 
Dans les deux cas, les parcelles d'intérêt récupérées dans les bases de données                         
agronomiques sont associées aux informations spectrales des tuiles liées à leur                     
localisation géographique. Les images satellites sont sélectionnées à partir de la                     
date d'observation des différents stades phénologiques. Cette sélection vise à ce que                       
la différence entre la date d'observation de l'état et la date de l'information spectrale                           
soit comprise entre 0 et 5 jours  avant l'observation in-situ. 
 

Indices spectraux 
Des bandes spectrales ont été utilisées pour obtenir les indices spectraux considérés                       
comme pertinents pour l'analyse des états phénologiques en agriculture. Dans les                     
tableaux suivants, nous présentons les bandes spectrales et les indices utilisés dans                       
cette étude de cas. 
 
 
 
 
 
 

2 ​https://theia.cnes.fr 
3 Multi-sensor Atmospheric Correction and Cloud Screening software (MACCS) 
4 Atmospheric Correction software (ATCOR) 
5 https://labo.obs-mip.fr/multitemp/sentinel-2/theias-sentinel-2-l2a-product-format/ 
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Tableau 2. Bandes spectrales Sentinel-2 utilisées 

Nombre  Résolution  Longueur d’Onde  Description 

B2  10 mètres  496.6nm (S2A) / 492.1nm (S2B  Bleu 

B3  10 mètres  560nm (S2A) / 559nm (S2B)  Vert 

B4  10 mètres  664.5nm (S2A) / 665nm (S2B)  Rouge 

B5  10 mètres  703.9nm (S2A) / 703.8nm (S2B)  Red Edge 1 

B6  20 mètres  740.2nm (S2A) / 739.1nm (S2B)  Red Edge 2 

B7  20 mètres  782.5nm (S2A) / 779.7nm (S2B)  Red Edge 3 

B8  20 mètres  835.1nm (S2A) / 833nm (S2B)  Proche Infrarouge 

B8A  20 mètres  864.8nm (S2A) / 864nm (S2B)  Red Edge 4 

B11  20 mètres  1613.7nm (S2A) / 1610.4nm (S2B)  SWIR 1 

B12  20 mètres  2202.4nm (S2A) / 2185.7nm (S2B)  SWIR 2 

 
 
Tableau 3. Indices spectraux utilisés et leurs formules 

Indices  Formule pour Sentinel-2  Source 

Normalized 
Difference Vegetation 

Index (NDVI)  DV I  N =  B8 − B4
B8 + B4

  (Rouse et al. 1973) 

Green Normalized 
Difference Vegetation 

Index (GNDVI)  NDV I  G =  B8−B3
B8 + B3  

(Gitelson, Kaufman, 
et Merzlyak 1996) 

Normalized 
Difference Water 

Index (NDWI)  DWI  N =  B3−B8
B3 + B8   (Gao 1996) 

Normalized 
Difference Yellow 

Index (NDYI) 
DY I  N =  B3−B2

B3 + B2   (Sulik et Long 2016) 

Normalized 
Difference Moisture 

Index (NDMI) 
DMI  N =  B8A−B11

B8A + B11   (Sykas 2019) 

Enhanced Vegetation 
Index (EVI) 

V I  .5  E = 2  [ B8−B4
B8 + 6B4 − 7.5B2+1]  

 
(Liu et Huete 1995) 
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Structure Insensitive 
Pigment Index (SIPI)  IP I  S =  B8 −B2

B8 + B4   (Sykas 2019) 

Soil Adjusted 
Vegetation Index 

(SAVI) 
AV I  S =  B8 −B4

1.428 (B8 + B4 + 0.428)   (Huete 1988) 

Atmospherically 
Resistant Vegetation 

Index (ARVI) 
RV I  A =  B8 − 2B4 +B2

 B8 + 2B4 + B2  
(Tanre, Holben, et 

Kaufman 1992) 

Advanced Vegetation 
Index (AVI)  V I  B8 (1 B4) (B8 4)A =  [ *  −  *  − B ]1/3   (Roy, Sharma, et 

Jain 1996) 

Bare Soil Index (BSI)  SI  B =  (B11 + B4) − (B8 + B2)
 (B11 + B4) + (B8 + B2)   (Sykas 2019) 

Moisture Stress Index 
(MSI)  SI  M =   B8 

B11
 

(Rock, Williams, et 
Vogelmann 1985) 

 

Tasseled Cap 
En plus des indices spectraux mentionnés ci-dessus, les informations spectrales                   
obtenues ont été transformées à partir de la méthodologie "​Tasseled Cap​". 
 
Kauth, R. J. et Thomas, G. S. (1976) ont imaginé une transformation de l'information                           
des bandes spectrales pour maximiser l'information contenue dans les nouveaux                   
éléments d'analyse. Il s'agit d'une méthode de compression permettant de réduire de                       
multiples données spectrales, en l'occurrence 6 bandes, en trois néo-canaux, qui                     
permettent de comprendre d'importants phénomènes de développement des cultures                 
dans l'espace spectral ​(Kauth et Thomas 1976)​. Les néo-canaux obtenus après la                       
transformation sont les suivants : 
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Tableau 4. Néo-canaux ​Tasseled Cap 

Indices  Formule pour Sentinel-2  Utilisation 

Brightness  6

Index  I   B =  √ 2
B32
B42

  Associé aux 
variations de la 
réflectance du sol. 

Greenness   7 Greenness​ ​= (-0.2848B2)+(-0.2435B3)+(-0.5436B4) 
+0.7243B8+0.0840B11+(-0.1800B12) 

Corrélation avec la 
vigueur de la 
végétation. 

Wetness   8 Wetness​ = 0.1509B2+0.1973B3+0.3279B4 
+0.3406B8+(-0.7112B11)+(-0.4572B12) 

Influencé par les 
bandes dans l'IR 
Moyen et lié à 
l'humidité des 
plantes et du sol. 

 

1.1.3. Données météorologiques  

AgroClim 
AgroClim est une unité au service de la communauté INRAE. Cette unité gère le                           
réseau agroclimatique national de l'INRAE et la base de données correspondante. Sa                       
fonction est d'assurer la traçabilité des observations dépendantes du climat.                   
AgroClim est également le point d'entrée unique des unités INRAE pour obtenir des                         
données météorologiques de Météo-France . 9

 
Les données utilisées sont le produit du modèle de données climatologiques                     
développé par Météo-France, ​SAFRAN ​(Système d’Analyse Fournissant des               
Renseignements Atmosphériques à la Neige). Safran travaille sur des régions                   
climatiquement homogènes. Ces régions ont une forme irrégulière, leur surface est                     
normalement inférieure à 1 000 km². Dans chaque région homogène, Safran estime la                         
variation de 8 paramètres climatiques (tableau 5 ci-dessous) pour chaque classe                     
d'altitude de 300 m, à partir de toutes les données climatiques disponibles (postes                         
météorologiques, mais aussi des analyses des modèles de prévision du temps à                       
grande échelle comme le modèle ARPEGE de Météo-France) ​(Lemaire 2015)​. Les                     
analyses de température, humidité, vitesse du vent et nébulosité sont produites                     
toutes les 6 heures. L’analyse des précipitations est faite au pas de temps journalier.                           
Après avoir obtenu les valeurs pour les zones, l’analyse est interpolée spatialement                       
sur une grille régulière de 8 km x 8 km. 
 
 

6 https://foodsecurity-tep.net/S2_BI 
7 https://www.indexdatabase.de/search/?s=tasselled+cap 
8 https://www.indexdatabase.de/search/?s=tasselled+cap 
9 https://www6.paca.inrae.fr/agroclim/ 
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Tableau 5. Données spatialisées par le modèle Safran de Météo - France ​(Lemaire 2015) 

Données disponibles   Période  Résolution de la maille 

1. Températures minimales, maximales et 
moyennes à 2 m au-dessus du sol (en °C) ; 
2. Humidité relative moyenne à 2 m au-dessus du 
sol (en g.kg-1) ; 
3. Force moyenne du vent à 10 m au-dessus du sol 
(en m/s) 
4. Précipitations solides (en mm) 
5. Précipitations liquides (en mm) 
6. Rayonnement infrarouge/solaire (en J/cm²) 
7. Rayonnement atmosphérique (en J.cm-2) 
8. Évapotranspiration potentielle (ETP mm), 
formule de Penman-Monteith 

 
 

1958 
à aujourd’hui 

 

 
 

8 km x 8 km 

 

Transformation des informations météorologiques 

 
Fig. 4. Schéma général de prétraitement des bases de données météorologiques. 

 
 
Pour cette étude, nous avons pris en compte toutes les variables climatologiques                       
obtenues par le modèle SAFRAN. Nous avons ajouté une autre variable, le degré jour                           
de croissance (gdd), qui est étroitement liée à l'évolution phénologique des cultures.                       
Le calcul de cette variable est basé sur la formule suivante: 
 

DD (Tmax Tmin) / 2 Tbase  G =  +  −   
 
Nous utilisons la température base de 5° selon ​(Morrison, McVETTY, et Shaykewich                       
1989)​ et la fonction gdd() du paquet de ​pollen , basée sur ​(Baskerville et Emin 1969)​.  10

10 ​https://cran.r-project.org/web/packages/pollen/vignettes/gdd.html 

Elvia Julieth Arellano Ortiz 18 

https://www.zotero.org/google-docs/?TLNKBU
https://www.zotero.org/google-docs/?HRcbQq
https://www.zotero.org/google-docs/?HRcbQq
https://www.zotero.org/google-docs/?broken=MtSQUl
https://cran.r-project.org/web/packages/pollen/vignettes/gdd.html


Prédiction statistique des stades du colza 
(​Brassica Napus L.​) à partir de données météorologiques et 

d’observations satellitaires 
 
Les données départementales quotidiennes des stations météorologiques les plus                 
proches des parcelles d'intérêt ont été regroupées par semaine. La prédiction des                       
états a été faite avec les informations climatologiques des 52 dernières semaines à la                           
date d'observation in situ. Cette décision est basée sur l'hypothèse empirique que les                         
variations des conditions météorologiques pendant au moins 10 mois peuvent avoir                     
un impact sur la croissance des plantes, du semis à la récolte. En outre, les                             
informations météorologiques sont une approximation des informations temporelles               
qui pourraient être utiles pour déterminer s'il est temps de planter, puisque les                         
variations de température, par exemple, permettent à un modèle comme Random                     
Forest de trouver des oscillations dans le signal. Si l'on considère les défis que le                             
changement climatique actuel pose au processus de modélisation, cette                 
identification de la saison a un avantage sur la date d'observation car elle permet                           
d'adapter la météorologie à une période spécifique de l'année, ce qui permet d'ajuster                         
le modèle à d'autres régions et d'autres années. D'autre part, du point de vue du                             
prétraitement des données, si nous extrayons 10 mois pour un état phénologique, il                         
est cohérent de le faire pour tous les autres, afin d'avoir le même nombre de variables                               
indépendantes par classe.  

Construction de l'ensemble de données final 
 

 
Fig. 5. Schéma général pour la construction de l'ensemble de données final 

Les données climatologiques ont été fusionnées avec les informations agronomiques                   
et spectrales correspondant à l'identifiant unique de chaque parcelle d'intérêt. À la                       
fin du prétraitement, l'ensemble de données suivant a été obtenu : 
 

Tableau 6. Composition finale de l'ensemble des données pour les modélisations 

Nb de parcelles  Nb de variables  Nb d'observations 

561  519 
28  spectrales 

491 climatiques 

3033 
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1.2. Méthodes 

1.2.1. Méthodes de classification utilisées 

Lasso Multinomial (GLM) 
En 1996, Tibshirani a développé le LASSO (Least Absolute Shrinkage and Selection                       
Operator) qui est une méthode qui réduit à zéro le coefficient de régression des                           
variables les moins impactantes. Associé à une validation croisée, il permet d'obtenir                       
le niveau d'impact approprié et donc de faire une sélection de variables. L'idée est                           
que la méthode LASSO minimise la somme des carrés résiduels pour lesquels la                         
somme des estimations (coefficients) n'est pas supérieure à une certaine constante                     
(Efendi et Ramadhan 2018)​. En d'autres termes, le LASSO limite l'estimation à moins                         
d'une certaine constante (dans ce cas, nous utilisons lambda1se), de sorte que                       
certaines estimations sont nulles. 
 
Pour prédire les variables catégorielles multiples, l'utilisation du modèle logit                   
multinomial dans l'analyse de régression pour les réponses de plusieurs catégories                     
non ordonnées est la plus utilisée ​(Tutz, Pößnecker, et Uhlmann 2015)​. La régression                         
multinomiale est une extension de la régression logistique binomiale. L'algorithme                   
nous permet de prédire une variable catégorielle dépendante qui a plus de deux                         
niveaux ​(Hosmer et Lemeshow 1989)​. Comme tout autre modèle de régression, la                       
variable obtenue en sortie du modèle multinomial peut être prédite en utilisant une                         
ou plusieurs variables indépendantes. Les variables indépendantes peuvent être                 
nominales, ordinales ou continues. 
 
Pour faire cette analyse multinomiale LASSO, nous utilisons le paquet ​glmnet ​pour                       
ajuster le modèle de référence. Le modèle permet de déterminer les variables les plus                           
importantes dans la classification des états phénologiques. 

Régression logistique multinomiale (MLR) - Réseaux de neurones 
 
Le MLR applique une transformation logarithmique non linéaire qui permet de                     
calculer la probabilité d'occurrence d'un nombre quelconque de classes d'une                   
variable dépendante sur la base de variables explicatives. Contrairement aux modèles                     
de régression linéaire qui utilisent les moindres carrés comme critère, les                     
coefficients du MLR sont généralement estimés en utilisant la probabilité maximale                     
(Jeune et al. 2018)​.   
 
Pour cette modélisation, nous utilisons le paquet ​nnet ​pour faire correspondre le                       
modèle multinomial à un réseau de neurones. 

Régression logistique ordinale (ORL) 
Un des modèles statistiques les plus appropriés pour l'analyse des données avec une                         
variable de réponse catégorielle est le modèle de régression logistique ​(Efendi et                       
Ramadhan 2018)​. La régression logistique ordinale est une extension du modèle de                       
régression logistique simple. Dans la régression logistique simple, la variable                   
dépendante est catégorique et suit une distribution de Bernoulli. Dans la régression                       
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logistique ordinale, la variable dépendante est ordinale, c'est-à-dire qu'il y a un ordre                         
explicite dans les catégories ​(Ananth et Kleinbaum 1997)​. 
 
Le modèle de régression logistique ordinal prend en compte l'ordre de la variable                         
dépendante catégorielle en utilisant les événements cumulatifs pour le calcul du                     
logarithme des probabilités ​(Ananth et Kleinbaum 1997)​. Cela signifie que,                   
contrairement à la régression logistique simple, les modèles logistiques ordinaux                   
considèrent la probabilité d'un événement et de tous les événements en dessous de                         
l'événement focal en une hiérarchie ordonnée. 
 
Dans cette étude de cas, une fois la variable catégorielle des états phénologiques                         
ordonnée, la régression logistique ordinale a été utilisée pour prédire les états en                         
fonction des variables indépendantes. Cela nous permettra de déterminer lesquelles                   
de nos variables indépendantes (le cas échéant) ont un effet statistiquement                     
significatif sur notre variable dépendante. Le paquet utilisé dans R était ​ordinal​. 

Random Forest (RF) 
Les “forêts aléatoires” (Random Forest) sont une combinaison d'arbres de décision.                     
Dans cette méthode de classification, chaque arbre dépend des valeurs d'un vecteur                       
aléatoire échantillonné indépendamment, avec la même distribution pour tous les                   
arbres de la forêt ​(Breiman 2001)​. L'erreur de généralisation pour les forêts converge                         
vers une limite à mesure que le nombre d'arbres dans la forêt augmente. L'erreur de                             
généralisation d'un classificateur d'arbres forestiers dépend de la force des arbres                     
individuels de la forêt et de la corrélation entre eux ​(Boulesteix et al. 2012)​. 
 
Le Random Forest est un algorithme très intéressant pour la gestion des                       
informations spectrales et le couplage avec d'autres variables (comme les variables                     
climatiques, par exemple) ​(Muñoz et al. 2018)​. Il présente des caractéristiques telles                       
qu'un fonctionnement efficace avec des jeux de données de grande taille, la capacité                         
à identifier des relations non linéaires entre les prédicteurs et la réponse, et à traiter                             
des variables prédictrices fortement corrélées ​(Kühnlein et al. 2014)​. 
 
L'algorithme génère une estimation interne non biaisée de l'erreur de généralisation                     
(erreur OOB) et a la capacité de déterminer quelles variables sont importantes dans                         
la classification ​(Breiman 2001)​. 
 
Les paquets utilisés dans R étaient ​RandomForest ​et ​Caret​. Dans la classification des                         
stades phénologiques, le modèle du Random Forest a été paramétré avec ​500 arbres​. 

k-Nearest Neighbors (kNN) 
L'algorithme de classification kNN est devenu une méthode importante dans                   
l'exploration de données et le ML depuis qu'il a été proposé en 1967 ​(Deng et al.                               
2016)​. Pour appliquer la méthode traditionnelle kNN à de grands volumes de                       
données, les méthodologies peuvent souvent être classées en deux parties, d’un côté                       
trouver rapidement les échantillons les plus proches, ou sélectionner des                   
échantillons représentatifs (ou éliminer certains échantillons) pour réduire               
l'estimation kNN ​(Zhu, Zhang, et Huang 2014)​. 
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Le k-NN est un algorithme de classification standard basé exclusivement sur le choix                         
des mesures de classification. Il est "non-paramétrique". Seul le k, qui est le nombre                           
de voisins à partir duquel les estimations sont établies, doit être fixé. K est une                             
valeur entière spécifiée par l'utilisateur. Le choix optimal de la valeur dépend                       
largement des données. En général, une valeur plus élevée supprime les effets du                         
bruit, mais rend les résultats de la classification moins précis. 
 
Dans cette étude de cas, l'algorithme a été utilisé dans R à partir du paquet ​Caret ,                               11

en déterminant comme méthode de contrôle la validation croisée avec 10 plis (​10                         
folds​). 
 

1.2.2. Détection de la floraison 
 
Comme premier test, une première classification binaire de la phase de floraison a                         
été effectuée. Nous avons utilisé un modèle basé sur la capacité prédictive des                         
indices spectraux. La méthode utilisée était le Random Forest et elle a été ajustée                           
pour les stades phénologiques regroupés en 2 classes. Les classes de floraison que                         
nous opposons aux autres sont F1, F2, G1, G2, G3, G4 - Floraison toujours en cours.  
 

1.2.3. Conditions de référence 
 
Le modèle de référence est construit en considérant les états phénologiques en                       
fonction des variables climatologiques et spectrales (figure 6 ci-après). L'ensemble de                     
données spectrales utilisé est le résultat de la chaîne de traitement iota2 (première                         
méthodologie d'extraction).  
 
 
 
 
 
   

11 ​https://cran.r-project.org/web/packages/caret/caret.pdf 
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États ~ Climat + Spectral 

Où ​:  
Climat​ =          Température minimale 

           Température moyenne 
           Température maximale 
           Précipitation 
           Evapotranspiration 
           Vitesse moyenne du vent 
           Rayonnement solaire 
           Degré jour de croissance (gdd) 
           Humidité relative 

 
Spectral ​=  Normalized Difference Vegetation Index (NDVI) 

  Normalized Difference Water Index (NDWI) 
    Green Normalized Difference Vegetation Index (GNDVI)  
  Normalized Difference Yellow Index (NDYI) 
  Normalized Difference Moisture Index (NDMI) 

Enhanced Vegetation Index (EVI) 
Advanced Vegetation Index (AVI) 
Soil Adjusted Vegetation Index (SAVI) 
Moisture Stress Index (MSI) 
Bare Soil Index (BSI) 
Atmospherically Resistant Vegetation Index (ARVI) 
Structure Insensitive Pigment Index (SIPI) 

 
Fig. 6.  Modèle de référence 
 
Les conditions de référence sont établies comme ligne de base pour évaluer et/ou                         
améliorer la classification en fonction du couplage ou non d'autres variables                     
thématiques. Cette base de référence est établie pour tester la variation d'une                       
variable à la fois et non pas de toutes les combinaisons de variables. 
 
Le problème de recherche est divisé en questions spécifiques dont on cherche les                         
réponses en modifiant une variable à la fois à partir de ces conditions de référence.                             
La sélection des conditions de référence est basée sur l'expérience de l'équipe de                         
travail et sur le soutien universitaire : 
 

✓ L'algorithme ​Iota2 est une chaîne de traitement pour la production                   
opérationnelle de cartes de l'occupation des sols à partir de séries temporelles                       
d'images de télédétection en utilisant une classification supervisée​(Inglada et                 
al. 2016; Fauvel et al. 2020)​. Sa polyvalence et son niveau d'​accuracy lui                         
permettent d'être utilisé dans une variété de contextes. 

✓ L'utilisation d'​indices spectraux en agriculture a été l'une des méthodes                   
d'analyse la plus populaire au cours des trois dernières décennies ​(Bolton et                       
Friedl 2013)​. En particulier, les indices de végétation normalisés tels que le                       
NDVI ont été largement utilisés en raison de leurs avantages interprétatifs                     
pour améliorer la discrimination entre le sol et la végétation, réduisant l'effet                       
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du relief sur la caractérisation spectrale des différentes couvertures terrestres                   
(Islam et Bala 2008; Bolton et Friedl 2013)​. 

✓ L'algorithme ​Random Forest (RF) est une méthode de classification moins                   
sensible à la qualité des échantillons d'entraînement et au surajustement (par                     
rapport à d’autres méthodes). Ces avantages sont dus au grand nombre                     
d'arbres de décision produits par la sélection aléatoire d'un sous-ensemble                   
d'échantillons de formation ​(Belgiu et Drăguţ 2016)​. De plus, il s'agit d'une                       
méthode déjà utilisée par l'équipe de recherche dans laquelle ce travail est                       
inscrit.  

✓ La sélection des ​variables climatiques et spectrales dans le but de rendre le                         
modèle reproductible à différentes échelles spatiales et dans différents lieux                   
géographiques est une stratégie de généralisation pour la modélisation future. 

✓ Les états phénologiques ​regroupés en 8 classes rendent la tâche de classification                       
plus précise. Dans ce cas d'étude, l'imprécision des données in-situ et la                       
limitation temporelle des informations spectrales et climatiques (une               
observation par semaine) ne permettent pas de distinguer correctement les 26                     
états. En définitive, l'intérêt agronomique de cette classification se concentre                   
sur les états les plus représentatifs de la culture. 

 

1.2.4. Comparaison des modèles 
 
Nous avons ajusté différents modèles de classification pour les 8 états phénologiques                       
groupés enregistrés (voir tableau 1). Nous comparons ensuite ces modèles avec le                       
modèle de référence (conditions de référence). 
 
Dans un premier temps, nous avons ajusté le modèle de référence à partir des quatre                             
méthodes de classification sélectionnées pour cette étude de cas (Lasso multinomial,                     
Régression logistique ordinale, Random Forest et K-Nearest Neighbor). Ensuite,                 
nous avons évalué les quatre méthodes en fonction de l'​accuracy et du temps de                           
calcul. Enfin, nous avons sélectionné Random Forest. 
 
L'idée était ensuite de créer des modèles qui cherchent à déterminer la pertinence                         
et/ou l'importance des groupes de variables (spectrales, climatologiques et                 
spatio-temporelles) pour l'identification des états phénologiques. Nous avons évalué                 
le potentiel prédictif des variables thématiques de manière isolée, en considérant des                       
modèles dans lesquels, à partir d'un seul groupe de variables, les états pouvaient être                           
identifiés avec ​précision​. Dans ce cas, les modèles suivants ont été utilisés : 
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États ~ Bandes spectrales 
   

États ~ Indices spectraux 
 

États ~ Tasseled Cap 
   

États ~ Climat 
   

États ~ Espace-Temps*   
 

Fig. 7. Modèles individuels de classification. *Date de l'observation in-situ, département 
 
 
Nous avons ensuite analysé le potentiel des indices spectraux avec les données                       
interpolées sur dix jours (iota2) et les données non interpolées (INRAE). Enfin, nous                         
avons couplé les variables spectrales, climatiques et spatio-temporelles pour                 
déterminer le potentiel de classification global.  
 
 

États ~ Indices spectraux + Espace-Temps 
 

États ~ Climat + Espace-Temps 
 

États ~ Indices spectraux + Climat + Espace-Temps 
   

Fig. 8. Modèles couplés de classification 
 
 
L'évaluation des différents modèles de classification a été réalisée sur la base de leurs                           
matrices de confusion et des mesures suivantes :  
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Tableau 7. Mesures d’évaluation des modèles 

Mesure  Formule  Concept 

 
Average Accuracy 

(Sokolova et 
Lapalme 2009)  l

∑
l

i=1

tp  + tni i
tp + fn  + fp + tni i i i

 
Pour chaque classe i, sont des vrais positifs,        tpi          

- des faux positifs, - des faux négatifs, etfpi            fni            
 - des vrais négatifs, respectivement. tni  

L'efficacité moyenne par 
classe d'un classificateur 

 
 
 
 
 

Coefficient 
kappa de Cohen 
(McHugh 2012) 

 k = (1 − p )e
 (p − p )o e  
 

est la probabilité empirique d'accord surpo            
l'étiquette attribuée à un échantillon (la           
proportion d'accord observé), et est l'accord        pe      
attendu lorsque les deux correcteurs attribuent           
des étiquettes au hasard. est estimé en        pe        
supposant une attribution aléatoire des         
étiquettes de classe. 

Le coefficient kappa est un         
nombre compris entre -1 et         
1. Les coefficients supérieurs       
à 0,8 sont généralement       
considérés comme un bon       
accord ; zéro ou moins         
signifie qu'il n'y a aucun         
accord (étiquettes   
pratiquement aléatoires). 

 
Out-of-bag (OOB) 

error 
(Hastie, 

Tibshirani, et 
Friedman 2009) 

Random Forest est entraîné en utilisant l'agrégation bootstrap, où chaque                   
nouvel arbre est ajusté à partir d'un échantillon bootstrap des observations                     
d'entraînement . L'erreur out-of-bag (OOB) est l'erreur moyenne  x , )  Z i = ( i yi                
calculée en utilisant les prédictions des arbres qui ne contiennent pas leur                       
échantillon bootstrap respectif. Cela permet au Random Forest de s'ajuster et                     
de se valider pendant l'entraînement. 
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2. Résultats 
 
 
Les étapes phénologiques de la ​Vigicultures® déterminées in situ sont établies sous                       
forme d'étiquettes de classification. Les stades observés in-situ sont la variable                     
dépendante à prédire. Les profils spectraux Sentinel-2 (S2) sont moyennés pour                     
chacune des 561 parcelles étudiées. Dans la première section, nous effectuons une                       
classification binaire (présence ou absence de fleurs) pour l'état de floraison avec la                         
méthode Random Forest, en ne considérant que les informations spectrales. Dans la                       
section 2.2, nous évaluons les cinq méthodes de classification sélectionnées en                     
termes d’​accuracy et de temps de calcul. Le modèle de référence est la base de cette                               
évaluation. Dans la section 2.3, nous effectuons des classifications en tenant compte                       
du couplage entre les variables spectrales, climatologiques et spatio-temporelles sur                   
la base du modèle de référence. Nous évaluons le potentiel prédictif de chacun des                           
modèles à partir des mesures résultant des matrices de confusion. Enfin, nous                       
analysons l'impact de deux facteurs dans la classification : le regroupement des états                         
phénologiques et la création d'un sous-ensemble de données équilibrées. 
 

2.1. Classification binaire de l'état de floraison avec la méthode                 
Random Forest 

Modèle de floraison 
 
Nous avons effectué une analyse préliminaire pour déterminer la capacité prédictive                     
des variables spectrales (indices) à réaliser une classification binaire de l'état de                       
floraison (présence ou absence de fleurs).  
 
 

Floraison ~ Indices spectraux 
Où :  
Indices spectraux = Normalized Difference Vegetation Index (NDVI), Normalized Difference Water                     
Index (NDWI), Green Normalized Difference Vegetation Index (GNDVI), Normalized Difference                   
Yellow Index (NDYI), Normalized Difference Moisture Index (NDMI), Enhanced Vegetation Index,                     
Advanced Vegetation Index, Soil Adjusted Vegetation Index, Moisture Stress Index (MSI), Bare Soil                         
Index, Atmospherically Resistant Vegetation Index, Structure Insensitive Pigment Index 

Fig. 9. Modèle de Floraison 
   

Elvia Julieth Arellano Ortiz 27 



Prédiction statistique des stades du colza 
(​Brassica Napus L.​) à partir de données météorologiques et 

d’observations satellitaires 
 

 
 
Selon le graphique, les données sont           
déséquilibrées. Sur 6494     
observations, nous en avons 1376         
(21%) au stade de la floraison et 5118               
(79%) qui ne le sont pas. Ce             
déséquilibre dans les données est dû           
au fait que nous ne confrontons           
qu'un stade à tous les autres. 
 
Fig. 10. ​Distribution des observations pour           
les classes binaires (Fleur - pas de fleur) 
   
 
 

Les résultats du modèle de classification sont présentés ci-dessous : 

 
Fig 11. (à gauche) Matrice de confusion. (à droite) Importance des variables  

 
 
La matrice de confusion nous montre la difficulté du modèle à déterminer                       
correctement l'état de floraison lorsque les données sont déséquilibrées. Pour cet                     
état, le taux de faux positifs (éléments inexactement classés comme fleuris) est                       
important, cependant le modèle est correct dans 72,41% des cas pour la floraison                         
(voir tableau 8 ci-dessous). 
 

Tableau 8. Matrice de confusion binaire  

  Prédictions 

Classes  0  1 

0  95.52%  4.48% 

1  27.59%   72.41% 
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Quant aux variables qui expliquent le mieux le modèle, les indices spectraux tels que                           
l'indice de stress hydrique (MSI), l'indice Normalized Difference Yellow Index                   
(NDYI) et l'indice Normalized Difference Water Index (NDWI) sont ceux qui                     
expliquent le mieux la présence ou l'absence de fleurs dans les observations                       
analysées.  
 
Les paramètres d'évaluation du modèle nous montrent que pour les données de                       
formation, l’OOB est inférieur à 10%. L’​accuracy ​et le coefficient kappa sont                       
respectivement de 0,91 et 0,71. Pour l'ensemble de validation, l’​accuracy ​diminue de 1                         
% et le kappa de 3 %. 
 

2.2. Classification multi-états  
 

2.2.1. Stades phénologiques groupés (8 États) 
 

 
Fig. 12. Distribution des observations pour les stades phénologiques groupés 

 
 
L'ensemble de données est déséquilibré et le nombre d'observations pour chaque état                       
diffère de manière observable (fig. 12 ci-dessus). Cependant, les stades phénologiques                     
moins représentatifs (SA, D1-D2 et E) font l'objet de plus de 90 observations chacun.                           
Les stades tels que B1-B6, B7-B10> et C1-C2 sont plus représentés avec environ 500                           
observations. Pour le stade F1-F2, il y a environ 250 observations. Enfin, pour le                           
stade final G recueille le plus d’observations de loin (plus de 1000). Comme                         
l'observation des stades est extraite de ​Vigicultures®​, on pourrait considérer que le                       
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nombre élevé d'observations pour les stades finaux de développement du colza est dû                         
à la présence d’un plus grand nombre de bioagresseurs dans cette période                       
phénologique. Par conséquent, l'identification de ces stades est de grande                   
importance pour notre problématique. 
 

2.2.2. Modèles statistiques (comparaison des méthodes de classification) 
 
Nous nous demandons si l’une des cinq méthodes de classification considérées                     
pourrait mieux prédire les états phénologiques des observations in-situ. Pour cela,                     
nous nous sommes sur les conditions de références (voir fig. 6, 3029 observations et                           
428 variables). Cet ensemble de données sera décomposé de manière aléatoire en                       
deux ensembles le premier d'entraînement et le second de test, respectivement de                       
70% et 30% des observations. Les figures 13, 14, 16, 18 et 20 illustrent les matrices de                                 
confusion obtenues dans l'ensemble de données de test pour chacun des                     
classificateurs. 
 
Lasso Multinomial (GLM)  
 
Nous avons utilisé le Lasso dans son mode multinomial et les résultats de l'ensemble                           
de tests sont présentés sur la figure 13 ci-dessous. La matrice de confusion nous                           
montre comment se détaille l’​accuracy ​globale de 85%. On observe que les classes les                           
mieux prédites par le modèle sont les classes B1-B6 (76,0%), B7-B10> (85,21%), C1-C2                         
(96,79%) et G (96,71%). Les erreurs entre les classes se produisent entre classes                         
voisines dans le temps (l'état d’avant ou d’après l'état observé), à l'exception d'une                         
observation classée F1-F2, alors que sa véritable classe est D1-D2. On observe                       
également que plus le nombre d'observations est faible, plus les classes voisines ont                         
tendance à être confondues, en revanche, les deux classes qui ont le plus grand                           
nombre d’observations, G et C1-C2 sont les mieux prédites. La classe SA est                         
confondue avec B1-B6 et dans le cas de D1-D2, le modèle la prédit comme C1-C2. 

 
Fig. 13. Matrice de confusion pour le classificateur MLR - Lasso Multinomial pour l'ensemble de test 
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Le LASSO nous permet de déterminer le nombre de variables qui expliquent le                         
modèle à partir du coefficient lambda en évitant le sur-ajustement (sélection de                       
variables). Pour notre étude, la figure 14 indique la fréquence de sélection de chaque                           
variable sur l’ensemble des 8 stades. Les précipitations (des premières semaines) et                       
l'humidité relative (des dernières semaines) sont les variables les plus sélectionnées.                     
Cependant, des indices spectraux tels que le GNDVI, le MSI et l'EVI sont aussi                           
présents. Ces indices liés à la présence d'humidité et à la teneur en chlorophylle de la                               
plante nous permettent de conclure que la réaction de la plante à certaines                         
conditions hydriques définit adéquatement l'état phénologique de la plante. 

 
Fig. 14. Importance des variables explicatives du modèle MLR - Lasso Multinomial 

 
 
Régression logistique ordinale (OLR) 

 
Fig. 15. Matrice de confusion pour le classificateur OLR dans l'ensemble de test 
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Nous avons décidé de classer les états à partir d'un modèle ordinal étant donné le                             
caractère séquentiel des états phénologiques (un état précède l'autre). Les résultats                     
de la matrice de confusion sont proches du modèle multinomial. L’ ​accuracy ​par                         
classe diminue pour les classes les mieux prédites par le classificateur précédent.                       
Dans ce modèle, nous observons les ​accuracy ​suivantes : B1-B6 (62,67%), B7-B10>                       
(76,06%), C1-C2 (90,38%) et G (95,39%). Cependant, dans les états où le nombre                         
d'observations est faible (SA, D1-D2 et E), le modèle confond moins les classes                         
voisines. Cependant, le modèle présente des erreurs plus graves car il intervertit es                         
classes plus distantes que le modèle précédent : il classe les observations des états                           
avec une distance interclasse de deux (D1-D2 comme F1-F2, par exemple). Si                       
l’ordonnancement des catégories phénologiques aurait dû améliorer la précision, il                   
est possible que le passage d’une régression LASSO à une régression logistique plus                         
simple pénalise le modèle aboutissant à une ​accuracy (79%) nettement inférieur à                       
celle du modèle précédent.  
 
 
Multinomial Logistic Regression (MLR) - Réseaux de neurones 
 
L'analyse de la matrice de confusion (fig. 16 ci-après), montre des différences par                         
rapport à la modélisation LASSO multinomiale dans la reconnaissance des états                     
analysés un par un, même si l'​accuracy ​globale est encore acceptable (83%). On                         
observe que les classes les mieux prédites par Lasso diminuent lorsqu'on utilise des                         
réseaux de neurones (B1-B6 (68,67%), B7-B10> (83,10%), C1-C2 (95,51%) et G (96,71%)).                       
Le modèle tend à confondre les classes plus facilement, même lorsqu'elles ne sont                         
pas voisines. Cette difficulté rend le modèle, malgré sa bonne ​accuracy​, moins                       
efficace que le Lasso. Nous concluons que dans cette classification avec des données                         
non équilibrées, les réseaux de neurones ajustent le modèle de manière proche même                         
si légèrement inférieure, au modèle utilisé LASSO multinomial. 

 
Fig. 16. Matrice de Confusion classificateur MLR - Lasso pour l’ensemble de test 
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Fig. 17. Importance des variables explicatives du modèle MLR 

 
Sur la figure 17 ci-dessus, on peut voir que les variables sélectionnées par le modèle                             
pour classer les états phénologiques, sont le BSI (Bare Soil Index) où les bandes B2,                             
B4, B8 et B11 sont concernées, ainsi que la variable climatique Rayonnement Solaire                         
au milieu de l'année précédant la date d'observation in situ de l'état. Nous avons pu                             
conclure que le modèle classifie en fonction des conditions d'absence et/ou de                       
présence de la végétation (indice BSI) et de la réponse spectrale du colza à l'intensité                             
du rayonnement solaire. 
 
Random Forest (RF) 
 
Nous avons utilisé un classificateur non linéaire pour déterminer si cette méthode                       
représentait une amélioration de l'​accuracy ​de la prédiction des états phénologiques.                     
Les résultats sont présentés ci-dessous dans la matrice de confusion.  

 
Fig. 18. Matrice de confusion pour le classificateur Random Forest dans l'ensemble de test 
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Nous constatons que les résultats sont comparables à ceux des méthodes linéaires                       
ajustées ci-dessus. La similarité est grande avec la classification multinomiale par                     
LASSO. Avec une ​accuracy ​globale de 84%, nous avons constaté que pour les classes                           
où les observations sont peu nombreuses, le classificateur continue à confondre la                       
classe cible avec ses voisines immédiates (SA, D1-D2, E et F1-F2) et il n’y a que 2                                 
erreurs avec des classes non immédiatement voisines. Toutefois, pour les classes                     
mieux identifiées, les résultats continuent d'être adéquats. Pour les états B1-B6                     
(74,00%), B7-B10> (87,32%), C1-C2 (93,59%) et G (96,71%). Nous concluons que le type                         
d'approche (linéaire ou non linéaire), n'affecte pas de manière drastique les résultats                       
de la classification. 

 
Fig. 19. Importance des variables explicatives du modèle RF 

 
Lorsque l'on observe l'importance des variables sélectionnées par le modèle, on peut                       
conclure que ce sont les variables climatiques qui déterminent la classification d'une                       
observation dans un état ou un autre, les plus pertinentes dans la méthode Random                           
Forest étant les températures (minimales et moyennes), le degré jour de croissance                       
(gdd) de la fin du premier trimestre et le rayonnement solaire au milieu de l'année                             
précédant l'observation in-situ. Des indices spectraux évaluant l'humidité du sol et le                       
stress hydrique des plantes complètent le top 16 des variables les plus importantes                         
pour la classification par ce modèle. 
 
k-Nearest Neighbors (kNN) 
 
Nous avons ajusté un modèle non paramétrique basé sur les distances (euclidiennes)                       
afin de déterminer si l'​accuracy des résultats de cette approche était comparable aux                         
modèles précédents.  
 
Dans la matrice de confusion de ce modèle (fig. 20 ci-dessous), nous continuons à                           
voir des résultats proches de ceux des modèles précédents. L’​accuracy ​globale était                       
proche du Lasso Multinomial (83,4%), une seule observation classifiée à plus d'une                       
classe de distance (D1-D2) et une classification très précise dans les états B1-B6                         
(71,33%), B7-B10 (82,39%), C1-C2 (94,87%) et G (95,72%) est une méthode intéressante                       
pour l'identification des états phénologiques. Les États ayant peu d'observations                   
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continuent à avoir un nombre important de faux positifs. Nous concluons qu'avec le                         
choix d'un classificateur simple, on obtient des résultats similaires à ceux de modèles                         
plus complexes. 

 
Fig. 20. Matrice de confusion pour le classificateur k-Nearest Neighbor dans l'ensemble de test 

 
Enfin, nous pouvons conclure qu'en ajustant cinq modèles, chacun avec une                     
approche différente, les classificateurs convergent vers des résultats proches. Les                   
classes les mieux prédites étaient les classes C1-C2 et G. Elles présentent un bon                           
nombre d'observations in-situ et de schémas climatiques et/ou spectraux qui                   
permettent de les classer facilement sans obtenir d'erreurs importantes.  
 
Dans le tableau suivant, nous observons en résumé les cinq classificateurs testés. si                         
les valeurs d’accuracy sont similaires avec un maximum pour le Lasso Multinomial,                       
les temps de calcul pour ce modèle plus complexe sont aussi beaucoup plus                         
important que pour les autres. En revanche, le modèle Random Forest est celui qui a                             
le temps d’estimation le plus faible tout en conservant une excellente capacité                       
prédictive ce qui nous amène à confirmer notre choix du modèle Random Forest                         
pour la suite de nos investigations sur le rôle des différentes variables explicatives.  
 

Tableau 9. ​Accuracy ​et temps de calcul pour les modèles évalués 

Méthode  Accuracy  Temps de Calcul (s) 

Lasso - Multinomial   85.4%  1200 

Multinomial Logistic Regression     
- réseaux de neurones  83,4%  26 

Ordinal Logistic Regression  79,6%  60 

Random Forest  84,2%  18 

k-Nearest Neighbors  83,4%  60 
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2.3. Comparaison de modèles basés sur différents types de variables                 
prédictives. 

 
 

2.3.1. Pré-traitements des bandes Spectrales (sur extraction iota2) 
 
Dans l'exercice de détermination des variables les plus significatives pour prédire le                       
changement d'état phénologique du colza, nous avons voulu identifier si la                     
classification à partir de différentes transformations de l'information spectrale                 
(Bandes, Indices et ​Tasseled Cap​) pouvait améliorer le modèle de référence. Nous                       
avons comparé l'​accuracy et l'OOB de chacune des transformations spectrales ainsi                     
que le taux de réussite de la classification par classe dans les données                         
d’entraînement. 
 

   
Fig. 21. ​Accuracy ​ et OOB de chaque modèle spectral (ensemble d'entraînement) 

 
 
Dans la figure 21, pour le ​Tasseled Cap​, une OOB de 0,42, une ​accuracy ​de 0,68 et un                                   
kappa de 0,59 le positionnent comme le moins performant. Pour les bandes                       
spectrales et les indices, les mesures d'évaluation sont proches. Avec un OOB de                         
0,33, une ​accuracy ​et un kappa de 0,68 et 0,59 respectivement, le choix entre les                             
indices et les bandes est réduit à des raisons pratiques, comme la facilité                         
d'interprétation dans le cas des indices ou la simplicité de mise en oeuvre pour les                             
bandes.  
En comparant l'​accuracy des modèles spectraux avec le modèle de référence                     
(Baseline), on observe une différence de 16% pour les bandes et de 26% pour ​Tasseled                             
Cap​. Les variables spectrales classifient environ 70% des observations, cependant le                     
modèle de référence (indices + climat) continue d'être le meilleur classificateur (84%).                       
L'ajout de données climatiques aux données spectrales fournit un grand nombre                     
d'informations. 
 
En observant le tableau suivant, nous pouvons apprécier le pourcentage de réussite                       
des modèles spectraux pour chaque état, dans l'ensemble de formation. 
 
 
 
 

Elvia Julieth Arellano Ortiz 36 



Prédiction statistique des stades du colza 
(​Brassica Napus L.​) à partir de données météorologiques et 

d’observations satellitaires 
 
Tableau 10. Pourcentage d'occurrences de chaque modèle pour chaque état phénologique 

Modèle   SA  B1-B6  B7-B10  C1-C2  D1-D2  E  F1-F2  G 

Bandes  55.56%  67.01%  54.58%  62.19%  10.00%  29.17%  42.94%  85.69% 

Indices  28.79%  71.79%  50.30%  76.99%   0.00%  15.87%  41.25%  89.73% 

TassCap  16.67%  73.50%  23.80%  60.55%  1.33%  12.70%  36.25%  82.70% 

BaseLine  54.55%  77.21%  82.53%  95.62%  49.33%  49.21%  71.88%  95.36% 

Code couleurs : le jaune correspond aux meilleures classifications. Le bleu correspond aux secondes                           
meilleures classifications. 
 
 
Le modèle de référence offre une meilleure classification pour tous les états                       
phénologiques sauf pour le premier. La deuxième place est en général atteinte par le                           
modèle qui considère les 10 bandes spectrales. Le modèle des indices spectraux suit                         
de près celui des bandes, cependant dans les états où le nombre d'observations est                           
faible, il tend à confondre les états objectifs avec les classes voisines. Le modèle                           
Tasseled Cap ne dépasse les deux précédents que dans l'état B1-B6. Il semble possible                           
de classer les états exclusivement à partir d'informations spectrales mais il est                       
important de considérer la contribution d'autres variables pour affiner la                   
classification. 
 
 

2.3.2. Focus sur les images récentes (iota2-inrae) - Méthodes d’extraction 
 
Afin d'analyser l'impact de la méthodologie d'extraction des informations spectrales,                   
nous avons effectué une classification à partir des indices spectraux pour les deux                         
ensembles de données (iota2 et inrae). 
 
L’​accuracy ​des classifications de la méthodologie iota2 est de 0,68 par rapport à la                           
méthodologie inrae qui est de 0,62. Comme pour l'OOB, iota2 identifie les classes                         
avec une réduction de 5% par rapport à l'inrae. 

  
Fig. 22. ​Accuracy ​et OOB de chaque méthodologie d’extraction (ensemble d'entraînement) 

 
Lorsque l'on compare les deux classifications en fonction du taux de réussite par                         
classe, on constate que iota2 est le meilleur. Les classes B1-B6, B7-B10, C1-C2 et G,                             
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qui présentent un nombre important d'observations (ensemble d'entraînement : 351,                   
332, 365 et 711 observations respectivement), sont les états les mieux prédits par le                           
modèle. Dans les deux cas, le modèle ne trouve pas de patron pour classifier l'état                             
D1-D2. 
 
Pour les deux ensembles de données, l'état D1-D2 est confondu avec l'état C1-C2 (40                           
% des observations sont classées dans la classe précédente). Dans l'échelle BBCH, les                         
deux états correspondent au développement des feuilles (rosette) et des organes                     
végétatifs qui, étant si proches, sont difficiles à différencier uniquement avec des                       
informations spectrales. 
 
 
Tableau 11. Pourcentage d'occurrences de chaque modèle pour chaque état phénologique 

Modelo   SA  B1-B6  B7-B10  C1-C2  D1-D2  E  F1-F2  G 

Indices_Iota2  28.79%  71.79%  50.30%  76.99%   0.00%  15.87%  41.25%  89.73% 

Indices_Inrae  31.82%  64.67%  36.75%  72.33%  0.00%  14.29%  38.75%  86.36% 

BaseLine  54.55%  77.21%  82.53%  95.62%  49.33%  49.21%  71.88%  95.36% 

Code couleurs : le jaune correspond aux meilleues classifications. Le bleu correspond aux secondes                           
meilleures classifications. 
 
Nous pouvons conclure que l'utilisation de la chaîne de traitement iota2 présente de                         
meilleurs résultats en l’état actuel de la chaîne Inrae. 
 
 

2.3.3. Variables climatiques vs. Variables Spatio-Temporelles 
 
Pour déterminer si les variables climatiques sont plus prédictives que les variables                       
spatio-temporelles, nous avons comparé les deux modèles en nous basant sur les                       
conditions de référence. 
 
Les graphiques montrent des résultats très proches. Avec une ​accuracy ​de 0,81 et un                           
kappa de 0,77 pour les variables spatio-temporelles contre une ​accuracy ​de 0,82 et                         
0,78 pour les variables climatiques, la principale différence est que l'OOB est                       
légèrement supérieure pour le classificateur ​Date_Dep​ (0,19 contre 0,18). 

  
Fig 23. ​Accuracy ​et OOB des modèles basés sur les variables climatologiques et spatio-temporelles 
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Au niveau de l’​accuracy par classe, les états B1-B6, B7-B10, C1-C2 et G présentent les                             
meilleures prédictions. 
 
 
Tableau 11. Pourcentage d'occurrences de chaque modèle pour chaque état phénologique 

Modèle   SA  B1-B6  B7-B10  C1-C2  D1-D2  E  F1-F2  G 

Date_Dep  40.91%  76.64%  74.70%  97.81%  38.67%  31.75%  54.37%  97.61% 

Weather  51.52%  72.36%  74.70%  95.89%  48.00%  46.03%  71.45%  95.64% 

BaseLine  54.55%  77.21%  82.53%  95.62%  49.33%  49.21%  71.88%  95.36% 

Code couleurs : le jaune correspond aux meilleues classifications. Le bleu correspond aux secondes                           
meilleures classifications. 
 
 
L'analyse des variables climatiques et spatio-temporelles continue à être, en général,                     
légèrement moins efficace que le modèle de référence au moment de la prédiction.                         
Cependant, des états tels que C1-C2 et G sont mieux classés par des variables                           
spatio-temporelles. Nous concluons qu'après le modèle de référence, ce sont les                     
variables climatiques qui permettent le mieux de classer les états phénologiques du                       
colza, mais la perte d’​accuracy due à la non utilisation de l'information spectrale est                           
faible. De même, l'ensemble des dates et des départements fournit une ​accuracy                       
souvent comparable à celle des informations météorologiques, même si pour des                     
stades précis et important comme celui de la floraison, il l’utilisation des variables                         
climatiques induit une différence importante (54.37% - 71.88%) 
 
 

2.3.4. Combinaison d’information de différentes variables thématiques 
 
Nous nous interrogeons sur le fait que la combinaison de différentes variables                       
thématiques dans un seul modèle puisse améliorer la classification des états                     
phénologiques. Nous avons construit des combinaisons qui combinent deux                 
variables thématiques et excluaient la troisième (climat + espace-temps et indices                     
spectraux + espace-temps), pour finalement combiner les trois (climat + indices +                       
espace-temps) et comparer leurs performances avec l'​accuracy​ et les mesures OOB. 
 
La figure 24 ci-dessous montre une ​accuracy ​assez proche entre les différents                       
modèles. Les modèles dans lesquels nous avons utilisé les informations                   
spatio-temporelles couplées aux variables spectrales ont obtenu une ​accuracy ​de 0,81,                     
mais lorsque nous avons couplé les variables spatio-temporelles aux variables                   
climatiques, l'​accuracy a augmenté de 1%. En revanche, lorsque nous avons couplé les                         
trois ensembles de variables thématiques dans un seul modèle (WIDD : Climate +                         
Spectral Indices + Date + Département), nous avons obtenu une ​accuracy très proche                         
de celle du modèle de référence mais avec une erreur de classification plus                         
importante (0,156 contre 0,157). 
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Fig 24. ​Accuracy ​ et OOB des modèles basés sur les combinaisons de variables spectrales, climatologiques et 

spatio-temporelles 
 

 
Enfin, en comparant le taux de réussite de la classification pour chacune des classes,                           
nous observons que dans certains états phénologiques, il existe des modèles qui                       
classent mieux ou que les résultats sont égaux au modèle de référence. Dans des                           
classes telles que B7-B10 ou F1-F2, le modèle WIDD prédit les classes dans 82,53% et                             
71,88% des cas respectivement. En revanche, dans les classes telles que C1-C2,                       
D1-D2, E et G, les meilleurs résultats sont répartis dans les trois modèles. Nous                           
pouvons conclure que le couplage entre les différentes variables nous offre une                       
amélioration de la prédiction des états individuels mais que le modèle choisi comme                         
référence est toujours un bon modèle étant pour tous les stades soit le meilleur soit le                               
deuxième meilleur modèle (et de peu). 
 
 
Tableau 12. Pourcentage d'occurrences de chaque modèle pour chaque état phénologique 

Modelo   SA  B1-B6  B7-B10  C1-C2  D1-D2  E  F1-F2  G 

Weather_DateDep  53.03%  70.94%  74.40%  95.39%  49.13%  50.80%  71.36%  95.20% 

Índices_DateDep  45.45%  76.07%  79.82%  96.44%  14.67%  25.40%  63.12%  96.22% 

WIDD  12 51.52%  76.92%  83.13%  96.34%  52.00%  47.62%  70.04%  95.14% 

BaseLine  54.55%  77.21%  82.53%  95.62%  49.33%  49.21%  71.88%  95.36% 

Code couleurs : le jaune correspond aux meilleues classifications. Le bleu correspond aux secondes                           
meilleures classifications. 
 
 
De plus, nous avons vu que les variables climatiques ont le plus grand poids dans la                               
classification des états phénologiques. Nous concluons que, bien que les modèles                     
précédents offrent des résultats proches du modèle de référence, celui-ci est le plus                         
polyvalent pour les classifications dans lesquelles on veut prédire sans dépendre des                       
variables de temps et d'espace et ainsi étendre le spectre d'utilisation à d'autres lieux. 
 

12 WIDD = Weather + Indices +DateDep 
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2.4. Impact du regroupement et du rééchantillonnage  
 

2.4.1. Impact du regroupement des états phénologiques (26 états) 
 
 

 
Fig 25. ​Distribution des observations pour les stades phénologiques non groupés 

 
 
Lorsque nous examinons le nombre d'observations de chacun des états non groupés,                       
nous constatons une forte variabilité. Les états phénologiques tels que C1, C2, G1 et                           
G4-Floraison terminée sont les plus représentatifs. D'autre part, les états                   
minoritaires tels que les Semis, B1, D1 et D2 avec un nombre d'observations inférieur                           
à 50, présentent un grand défi pour les classificateurs utilisés. Nous nous                       
interrogeons sur le fait qu’un ensemble de données fortement déséquilibré puisse                     
être bien classé en utilisant les conditions de référence et la méthode du Random                           
Forest. 
 
La figure 26 ci-après montre la comparaison des matrices de confusion pour les états                           
groupés et non groupés. On observe que pour les états initiaux (à gauche), le modèle                             
confond la classe cible avec jusqu'à 8 classes différentes (état B3), cependant ces 8                           
classes sont toutes considérées comme voisines dans le modèle à 8 classes et les                           
erreurs sont largement concentrées dans les classes les plus voisines. À partir de                         
l'état C1, le nombre de vrais positifs augmente et la différenciation entre les classes                           
est meilleure. La qualité de classification, rapportée au modèle à 8 classes peut même                           
être améliorée ponctuellement. Par exemple, l’ensemble C1-C2 ne voit que 4                     
confusions avec D1-D2 au lieu de 10. L’ensemble D1-D2 a toujours 8 confusions avec                           
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C1-C2 et augmente de 6 à 9 ses confusions avec E mais n’a aucune confusion avec le                                 
stade plus distant F1-F2. Le stade E n’admet que des confusions avec les sous-classes                           
les plus proches (D2 et F1). L’ensemble F1-F2 n’a plus non plus de confusion avec le                               
stade distant D1-D2. Des distinctions nettes à l’intérieur des classes regroupées sont                       
aussi possibles dans certain cas, c’est notamment le cas du groupe très nombreux des                           
observations G: L’opposition entre les trois premières classes de G et les trois                         
dernières est particulièrement marquée. Dans l’ensemble, le regroupement des                 
valeurs autour de la diagonale est marquant et laisse supposer qu’une estimation au                         
niveau de la classe initiale Vigicultures resterait informative, surtout si le nombre                       
encore faible d’observation par classe venait à être augmenté. Cependant, les                     
paramètres d'évaluation chutent logiquement avec l’augmentation du nombre de                 
classes. Avec 26 états phénologiques, l'​accuracy globale du modèle est inférieure à                       
50% et l'erreur  OOB est plus que triplée (0,15 contre 0,51). 
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Fig 26. Matrices de confusion du modèle de référence avec les états phénologiques groupés (en haut) et les états 

non groupés (en bas) 
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Nous concluons que la stratégie de regroupement nous a permis d’avoir des résultats                         
synthétiques probablement généralisables à un classement plus fin qui semble en                     
partie possible en cas de besoin.  
 
 

2.4.2. Modèle de référence avec stratégies de ré-échantillonnage  
 
En raison de la difficulté que nous avons rencontrée pour prédire les classes où le                             
nombre d'observations est considérablement plus faible, nous avons décidé d'évaluer                   
les conditions de référence dans un ensemble de données équilibré en utilisant trois                         
méthodes de rééchantillonnage. Nous avons d'abord équilibré l'ensemble des                 
données en effectuant un processus de sous-échantillonnage. Pour cette méthode,                   
nous retenons tous les cas de la classe minoritaire et choisissons au hasard un                           
échantillon avec le même nombre de cas dans les classes majoritaires. Ensuite, nous                         
équilibrons les données par un suréchantillonnage où nous laissons tous les cas de la                           
classe majoritaire, et nous augmentons le nombre de cas dans les classes                       
minoritaires par un échantillonnage avec remplacement. Enfin, nous utilisons la                   
technique SMOTE qui comprend à la fois le sur-échantillonnage et le                     13

sous-échantillonnage. Pour maintenir l'utilisation des ensembles           
d’entraînement/tests, nous l'avons appliquée séparément à chacun des deux                 
ensembles. 
 
Les résultats présentés à la figure 27 (ci-dessous) nous permettent de déterminer que                         
le meilleur modèle est celui qui est équilibré et qui repose sur la méthode de                             
l'échantillonnage ascendant. Avec une ​accuracy ​de 0,98% pour l’ensemble utilisé pour                     
l'entraînement du modèle ce modèle augmente la performance de la classification                     
des états phénologiques de 14% par rapport au modèle de référence. L'erreur de                         
classification est réduite de façon drastique à une valeur de 0,017 par rapport à une                             
valeur de 0,15 dans le modèle de référence. La technique hybride ​SMOTE ​a une                           
accuracy ​de 0,88 améliorant de 4 % l'​accuracy du modèle de référence ainsi qu'une                           
OOB plus faible (0,11 contre 0,15). Cependant, l'utilisation de la technique de                       
sous-échantillonnage pour équilibrer l'ensemble des données en réduisant le nombre                   
d'observations réduira les prédictions. 

  
Fig 27. ​Accuracy ​et OOB du modèle de référence avec données équilibrées 

 

13 Synthetic Minority Oversampling Method 
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Nous pourrions conclure que l'utilisation de méthodes de rééchantillonnage pour                   
équilibrer les données améliore considérablement la qualité de la classification avec                     
un investissement minimum en temps de calcul. Cependant, lors de l'évaluation du                       
modèle dans l'ensemble de test, nous avons constaté une diminution des paramètres                       
d'évaluation. Pour la série d'entraînement, nous avons une ​accuracy ​de 0,98, un kappa                         
de 0,98 et un OOB de 2 %. Cependant, pour l'ensemble de test, nous obtenons une                               
accuracy ​de 0,73 et un kappa de 0,69 qui sont en fait inférieur à la stratégie sans                                 
ré-échantillonnage. La stratégie de ré-échantillonnage ne semble donc pas permettre                   
in fine​ d’amélioration de la prédiction. 
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3. Discussion 
 
La nature subjective des observations phénologiques terrestres a toujours été un                     
problème dans l'étude récente de la phénologie ​(Czernecki, Nowosad, et Jabłońska                     
2018)​. Le développement de méthodes de classification pour identifier des modèles                     
d'aide à la décision dans l'analyse du comportement de la végétation d'intérêt                       
agricole est le pilier de l'analyse de cette problématique de recherche. 
 
Dans l'intérêt de déterminer l'importance des variables spectrales, climatiques et                   
spatio-temporelles dans l'identification des différents états phénologiques de               
cultures telles que le colza, nous avons évalué différentes hypothèses. Au départ,                       
nous avons effectué une classification binaire de l'état de floraison dans laquelle                       
nous avons identifié que les indices spectraux tels que le ​MSI​, le ​NDYI ​et le ​NDWI                               
sont des éléments fondamentaux pour la classification de cet état. Les paramètres                       
d'évaluation sont adéquats, mais l'impact sur le déséquilibre des données rend la                       
tâche de classification difficile. Ensuite, nous avons constaté que, bien qu'en                     
évaluant cinq méthodes de classification, les résultats sont assez proches. Nous nous                       
attendions à ce que le modèle ​OLR​, qui prend en compte l'ordre hiérarchique des                           
classes, soit le plus précis puisqu'il est le plus proche de la réalité (il trie les                               
étiquettes dans un ordre d'occurrence), mais des méthodes telles que le ​Random                       
Forest ​se sont révélées plus performantes. D'autre part, en étudiant les différentes                       
possibilités de regroupement entre les variables thématiques, nous avons constaté                   
que les variables météorologiques sont déterminantes pour la classification et que                     
dans les situations où les observations in situ ne sont pas disponibles ou sont                           
incohérentes, un couplage entre les indices climatiques et spectraux permet de                     
prédire les états phénologiques avec une ​accuracy ​de 84% avec très peu d'erreurs                         
impliquant des classes très différentes. Enfin, l'impact du regroupement des classes                     
pour améliorer le succès de la classification, est un outil qui permet de hiérarchiser                           
les états les plus importants à étudier. L'utilisation de techniques de                     
rééchantillonnage des données améliore l'​accuracy apparente du modèle de référence                   
mais introduit un sur-ajustement du modèle qui se traduit par une différence                       
d'​accuracy ​entre l'ensemble d’entraînement et l'ensemble de test proche de 25 %. 
 
Les paramètres phénologiques des images satellites multi-temporelles peuvent               
indiquer le développement de la croissance des cultures dans une grande région                       
(Fisher et Mustard 2007; Zhong et al. 2011; Zhong, Gong, et Biging 2014; Li et al.                               
2014)​. En ce qui concerne spécifiquement la floraison, comme ​d’Andrimont et al.                       
(2020)​, nous avons identifié que l'indice ​NDYI ​saisit l'augmentation de la coloration                       
jaune des fleurs de colza dans la bande spectrale verte (B3). Le jaune des pétales de                               
colza est dû à sa teneur en pigments caroténoïdes qui absorbent des longueurs                         
d'onde de ~450 nm ​(Sulik et Long 2016)​. Les conditions d'humidité interne                       
(chlorophylle ou capacité de rétention d'eau) et/ou externe (sol) sont également                     
importantes dans la classification. Indices tels que NDWI et MSI où les bandes B8                           
(NIR), B8a (Red Edge 4) et B11 (SWIR 1) sont concernées. Le Random Forest est un                               
algorithme approprié pour classer les états phénologiques individuellement,               
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cependant, des analyses ultérieures nous ont permis de généraliser le modèle et de                         
l'appliquer à une classification multi-états. 
 
Afin de mettre au point un outil d'aide au processus de prédiction des états                           
phénologiques du colza, nous avons développé une approche basée sur un modèle de                         
référence qui sélectionne des indices spectraux et des variables climatiques pour la                       
prise de décision. Grâce à ce modèle de référence, les comparaisons visant à                         
déterminer le meilleur classifieur sont facilitées. Les données in-situ pour notre                     
étude de cas sont limitées, car l'obtention de données de terrain fiables et précises à                             
une échelle appropriée est un effort difficile (Fisher y Mustard 2007). L'approche                       
basée sur les classifications catégorielles présente des avantages lorsque la                   
disponibilité des données sur la réalité du terrain est limitée (Zhong et al. 2011). 
 
Par conséquent, la décision d'évaluer les classificateurs pour comparer leurs                   
performances entre eux (benchmarking) permet une référence/orientation empirique               
pour sélectionner les classificateurs les plus appropriés pour des problèmes                   
spécifiques ​(C. Zhang et al. 2017)​. De la même manière que ​Lorena et al. (2011)​, nous                               
constatons que pour les études biogéographiques, le RF est une technique de                       
modélisation prometteuse, en raison de ses performances élevées sur des ensembles                     
de données composés d'un grand nombre de variables diverses et indépendantes.                     
Cependant, d’autres modèles de régression multinomiale basés sur le Lasso ou des                       
réseaux de neurones présentent une ​accuracy ​considérablement élevée. Le compromis                   
entre efficacité et rapidité justifie en tout cas le choix par ​Inglada et al. (2016) du                               
Random Forest comme algorithme de référence pour la classification de l’occupation                     
du sol par iota2. 
 
D'autre part, selon ​Zhang, Friedl, et Schaaf (2009)​, il a été démontré que les indices                             
de végétation permettent de mieux décrire la croissance des cultures et améliorent                       
considérablement l'​accuracy de la classification des cultures. Cependant, dans notre                   
cas, en analysant les différentes transformations des informations spectrales, nous                   
avons constaté que les bandes spectrales individuelles sont des variables tout aussi                       
intéressantes que les indices dans des algorithmes tels que Random Forest pour                       
différencier une classe d'une autre parce que les arbres de décision permettent des                         
combinaisons de variables qui peuvent être tout aussi intéressantes que celles                     
fournies par les indices spectraux. En analysant la contribution de chaque variable                       
explicative dans le modèle final (modèle de référence), on constate une influence                       
faible à modérée de l'information spectrale du satellite. Au contraire, les                     
caractéristiques météorologiques sont les plus prédictives dans le cas des stades                     
phénologiques de l'automne, de l'hiver et du printemps, ce qui montre une relation                         
avec la température de ces périodes. L'influence de la température sur la croissance                         
des plantes est nettement plus importante au printemps, lorsque les plantes                     
commencent leur cycle de développement après la pause hivernale ​(Pope et al. 2013;                         
Springate et Kover 2014)​. Cependant, en raison de sa nature cyclique, l'information                       
météorologique fournit également des informations sur la temporalité de                 
l'observation, ce qui est très important pour l'identification de l'étape appropriée,                     
comme l'indique l'efficacité des modèles avec des données spatio-temporelles. 
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Dans le cadre de notre analyse, le processus de classification ne prend pas                         
explicitement en compte la dimension temporelle (approximation de l'ensemble de                   
données en tant que série temporelle). Cependant, il existe des modèles qui intègrent                         
la date d'observation comme variable explicative, ce qui, associé aux informations                     
météorologiques, pourrait donner des résultats satisfaisants en termes d’​accuracy                 
dans des​ études ultérieures. 
 
Concernant la méthodologie d'extraction des informations spectrales, lorsque               
l'échelle spatiale d'analyse est élevée, la présence de nuages et d'ombres sur les                         
images satellites sont des situations à prendre en compte. Selon ​Inglada et al. (2015)​,                           
les données interpolées tendent à réduire ces inconvénients. Pour cette raison, les                       
résultats obtenus avec la méthodologie iota2 présentent de meilleurs résultats que la                       
méthodologie inrae où l'on ne tient pas compte de l'utilisation du masque de nuage                           
proposé par le produit theia. Cependant, la méthodologie inrae a l'avantage de                       
pouvoir être utilisée en temps réel alors que iota2 permet ici une interpolation à                           
partir de l'image suivante même si elle est prise beaucoup plus tard. 
 
Bien que dans cette étude nous n'ayons pas effectué de regroupement statistique, la                         
décision de regrouper les états phénologiques en fonction de l'expertise de l'équipe                       
de recherche et de la comparaison avec l'échelle BBCH, nous a permis d'obtenir un                           
modèle d'une ​accuracy ​adéquate. Les résultats des matrices de confusion montrent                     
que plus le nombre de classes (états phénologiques) à prédire est élevé, plus la                           
variabilité et la présence de valeurs aberrantes sont importantes, ce qui tend à                         
diminuer l'efficacité de la tâche de classification, puisque les classes sont plus                       
fréquemment confondues entre elles. 
 
Malgré les lacunes de cette approche et les limites présentées par les données                         
satellitaires dans la modélisation de la phénologie des plantes, cette approche                     
pourrait encore être en mesure de donner une approximation fiable des observations                       
traditionnelles au sol, notamment en ce qui concerne la fin de l'hiver (états B7-B10>                           
et C1-C2) et le printemps (états F1-F2 et G). Cependant, la tendance à confondre les                             
états voisins est une variable qui doit continuer à être analysée dans les travaux                           
ultérieurs. 
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4. Limites et Difficultés 
 
Dans l'exercice de résolution de la question de recherche, le temps est l'une des                           
variables les plus conditionnantes, et pour cette raison, il n'a pas été possible                         
d'envisager toutes les possibilités de couplage entre les variables thématiques. Il se                       
peut qu'une combinaison non prise en compte permettra d'obtenir une meilleure                     
accuracy ​que celles obtenues dans notre analyse. 
 
D'autre part, selon l'analyse bibliographique, l'étude phénologique des cultures, dans                   
la plupart des cas, est analysée comme une série temporelle. Nous avons pris le                           
risque d'analyser le problème selon une approche différente pour établir le potentiel                       
prédictif des variables climatiques et spectrales sans considérer explicitement la                   
temporalité du phénomène. L'approche conventionnelle a été adoptée dans le cadre                     
d’un autre stage réalisé à Toulouse au CESBIO. 
 
La qualité de l'ensemble des données est une variable à considérer pour les analyses                           
futures, bien que ​Vigicultures® ​nous fournisse des informations phénologiques, son                   
principal objectif est le suivi épidémiologique des cultures. Si ces données ne sont                         
pas spécifiquement orientées vers le suivi des stades et pourraient être imprécises,                       
elles offrent une opportunité unique d’ajuster un modèle de prédiction à un grand                         
nombre de champs répartis dans toute la France. 
 
Nous avons aussi eu deux grands types de difficultés pendant le stage. : les                           
difficultés du processus de recherche et les difficultés logistiques. 
 
Les difficultés dans le processus de recherche sont principalement liées au                     
traitement des informations spectrales. Dans la seconde méthodologie d'extraction                 
(inrae, voir page 14), nous avons effectué les corrections atmosphériques mais nous                       
n'avons pas pris en compte le masque nuageux, faute de temps nous n’avons pas pu                             
ré-extraire et re-traiter les données, cependant cette tâche est la plus importante                       
pour pouvoir comparer correctement les deux méthodologies (iota2/inrae) car                 
l'intérêt de la méthodologie inrae est d'utiliser l'image satellite la plus récente. Cette                         
approche dans laquelle nous réduisons le nombre d'observations pourrait présenter                   
une autre difficulté en limitant la disponibilité des données satellitaires, mais elle                       
pourrait améliorer la pertinence de l’information utilisée.  
En ce qui concerne les difficultés logistiques, le lancement d'un processus                     
d'apprentissage tel que celui de ce stage dans une situation de crise sanitaire                         
mondiale (COVID-19) rend la tâche difficile à de nombreux égards, le plus important                         
a été les difficultées administratives dans le cadre d’un confinement généralisé.                     
Toutefois, une bonne communication et des efforts conjoints ont permis de résoudre                       
les difficultés à temps. Cependant, cette situation atypique a permis d'ajuster les                       
ressources internes de chacune des parties afin que le travail à distance devient une                           
stratégie efficace pour l'apprentissage. Une autre difficulté logistique a été la casse                       
(corruption matérielle) du disque dur où étaient stockées toutes les images satellites,                       
ce qui a retardé d'une semaine les processus suivants, mais cela a permis de tester et                               
confirmer l'efficacité de la chaîne de traitement.   
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Conclusion 
 
L'intérêt de notre approche de classification réside dans le fait qu'une fois les stades                           
phénologiques classifiés à partir du modèle de référence, nous sommes en mesure                       
d'établir des relations entre la quantité de bioagresseurs et un stade phénologique                       
donné, ce qui peut aider à identifier les conséquences sur le rendement final de la                             
culture. Bien que l'étude ne soit pas en mesure de déterminer l'impact de ces                           
relations, les résultats obtenus constituent une première étape importante pour                   
continuer à développer les connaissances dans ce domaine. 
 
L'étude et l'analyse des résultats obtenus nous ont permis de proposer un modèle de                           
performance basé sur l'algorithme de Random Forest pour la classification des états                       
phénologiques du colza à partir de variables météorologiques et spectrales. Bien que                       
le modèle ne puisse pas pleinement remplacer les observations in situ​, il peut aider au                             
processus de prise de décision et réduire la dépendance à l'égard du travail sur le                             
terrain pour obtenir des informations phénologiques, notamment lorsque sur des                   
données d’archives sur les bioagresseurs et les rendements les dates de changement                       
de stades phénologiques n’ont pas été identifiés mais que des images satellites sont                         
disponibles. 
 
Les perspectives de ce travail sont formulées sur trois fronts. D'abord, analyser l'effet                         
d'un regroupement aléatoire d'états phénologiques sans tenir compte du                 
regroupement des états de Vigicultures de la classification BBCH. L'idée d'effectuer                     
un processus de regroupement automatique (classification non supervisée) pour                 
regrouper les classes dans lesquelles le modèle a plus de difficultés à se différencier                           
pourrait être une piste intéressante à explorer. Deuxièmement, lorsqu'il y a des                       
classes surreprésentées, il y a un risque que le modèle en apprenne trop au détriment                             
des classes moins représentées. Pour éviter ce problème, il est proposé d'approfondir                       
la construction d'un ensemble de données équilibré où la composition dans chaque                       
état est presque identique. Enfin, il est proposé d'adapter un modèle qui intègre                         
plusieurs sous-modèles pour chaque état phénologique et d'évaluer ses résultats avec                     
ceux obtenus jusqu'à présent. 
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Annexe 

Tableaux de résultats des modélisations avec les données               
d'entraînement et les données de test 

Spectral 
 

Ensemble de 
données  OOB 

Modèle 
Entraînement 

Validation 
Test  Précision 

du modèle  

Différence avec 
mod. de réf. 

baseline = 0.84 accuracy  kappa  accuracy  kappa 

Bandes  32.27%  0.68  0.59  0.70  0.62  0.68  0.16 

Indices  32.50%  0.67  0.59  0.69  0.60  0.67  0.17 

TassCap  52.35%  0.58  0.46  0.60  0.49  0.58  0.26 

 

Inrae_Iota2 (Indices) 
 

Ensemble de 
données  OOB 

Modèle 
Entraînement 

Validation 
Test  Précision 

du modèle  

Différence avec 
mod. de réf. 

baseline = 0.84 accuracy  kappa  accuracy  kappa 

Indices_Iota2  32.5%  0.68  0.59  0.69  0.60  0.68  0.17 

Indices_Inrae  37.9%  0.62  0.52  0.65  0.56  0.62  0.22 

 

Autres modèles 
 

Ensemble de 
données  OOB 

Modèle 
Entraînement 

Validation 
Test  Précision 

du modèle  

Différence avec 
mod. de réf. 

baseline = 0.84 accuracy  kappa  accuracy  kappa 

Date_Dep  18.61%  0.81  0.77  0.82  0.77  0.81  0.03 

Weathers  17.71%  0.82  0.78  0.82  0.77  0.82  0.02 

WDD  17.80%  0.82  0.78  0.82  0.77  0.82  0.02 

IDD  18.98%  0.81  0.76  0.83  0.79  0.81  0.03 

IWDD  15.73%  0.84  0.80  0.85  0.81  0.84  0.00 
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