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Abstract

It is well documented that the pest and pathogens affect the status of field crops, resulting
in lower yields. These factors provide an incentive for farmers to use synthetic chemicals
such as pesticides and fungicides. However, such control mechanism have detrimental
repercussions on the environment and the health of the farmers being the first to be
exposed. The aim of this study is to predict statistically the presence and abundance for
multiple pests and diseases in cultivated field crops based on climate parameters. The
statistical models could provide aid to farmers in order to construct better control
mechanisms and assist in the process of decision-making. Our methodology depended
on the examination of the French epidemiological data, consisting of 9 years of
observations. Thirty-(30), major pathogens and pests of field crops (winter wheat,
rapeseed, potato, maize and barely) were jointly analyzed with the climate variables. For
most of them, no predictive models existed. Explanatory variables from the weather data
that favor the occurrence of the diseases were selected by the Lasso regression. The
regression selects temperature and rainfall as the major determinants of the occurrence.
The geographical points (longitude and latitude) of the observations are also selected in
some models including Septoria tritici, Sclerotinia sclerotiorum, Phytophthora infestans
efc. On average, we were able to explain 36.8% of diseases (pathogens) presence
variation and 35.5 % of pest presence variation. The occurrence of diseases consists of
the interaction between pests/pathogens, host crops and environmental conditions. This
complex interaction calls for an integration between crop modellers, agronomist and
biologist to enhance knowledge and awareness to farmers.

Key words: Regression, Temperature, Rainfall, Pathogens, Pests

Résumé

Il est établi que les ravageurs et les agents pathogenes affectent I'état des cultures,
entrainant une baisse des rendements. Ces facteurs incitent les agriculteurs a utiliser des
produits chimiques de synthése tels que les pesticides et les fongicides. Cependant, ces
produits entrainent des répercussions néfastes sur I'environnement ainsi que sur la santé
des agriculteurs, ces dernier étant les premiers a y étre exposés. L'objectif de cette étude
est de prédire statistiquement la présence et I'abondance de divers ravageurs et maladies
dans les cultures en se basant sur des paramétres climatiques. Les modéles statistiques
fournissent un soutien aux agriculteurs afin de construire de meilleurs mécanismes de
contrdle et d'aider au processus de prise de décision. Notre méthodologie s'est appuyée
sur l'examen des données épidémiologiques frangaises constituées de 9 années
d'observations. Trente (30) pathogénes et ravageurs majeurs de cultures (blé d'hiver,
colza, pomme de terre, mais et orge) ont été analysés conjointement avec les
composantes climatiques. Les variables explicatives des données météorologiques
favorisant I'apparition des maladies ont été sélectionnées par la régression Lasso. La
régression sélectionne la température et les précipitations comme principaux
déterminants de l'apparition des maladies. Les points géographiques (longitude et
latitude) des observations sont également sélectionnés dans certains modéles dont
Septoria tritici, Sclerotinia sclerotiorum, Phytophthora infestans, etc. En moyenne, nous
avons pu expliquer 36,8 % de la variation de présence de maladies (pathogénes) et
35,5 % de la variation de présence de ravageurs. L'apparition des maladies est due a
l'interaction entre ravageurs/pathogénes, les cultures hétes et les conditions



environnementales. Cette interaction complexe nécessite une intégration entre les
modélisateurs de cultures, les agronomes et les biologistes afin d'améliorer les
connaissances des agriculteurs et les sensibiliser.

Mots clés : Régression, Température, Précipitations, Pathogénes, Ravageurs
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1. Introduction

Bio-aggressors such as pests, pathogens and diseases are among factors that affect the
status of field crops (wheat, rapeseed, maize, etc) (Donatelli et al., 2017). These factors
are a burden to farmers, and have detrimental repercussions on several components such
as yield, with an economical origin. The bio-aggressors provide an incentive for farmers
to apply phytosanitary products on field crops. The application of such products has raised
a global concern over the human health and environmental status (Rizzati et al., 2016).
France's farming system is ranked third in the world for the use of phytosanitary products
(Jacquet et al., 2011). Therefore, several studies have proposed the possibility of reducing
the use of synthetic chemicals on field crops, which will have a positive impact on the
environment, the health of the farmers and local residents, as well as the biodiversity
(Pelosi et al., 2013, Jacquet et al., 2011, Delaune et al., 2019). Reducing the use of
pesticides and fungicides may be achieved through various farming practices that will
favor the natural control of pests and diseases (Delaune et al., 2019) and resilience of
crops to the pests and diseases (Perez-Hedo et al., 2017).

Statistical tools including the epidemiological models are regarded as a way to estimate
and predict the presence of pests and diseases. The models provide aid to farmers in
order to construct better control mechanisms and assist in the process of decision-making
(Dalal & Singh, 2017). The study by Tonnang et al. (2017) depicts that the diseases and
pest forecasting brings awareness of the actual timing of incidence. This approach helps
in achieving quality results in terms of control strategies, and help avoid applying
pesticides when the risks are low, with positive impact on economic aspects and
environmental benefits. This process is critical as it leads to a sustainable pest control
management (Tonnang et al., 2017).

Jacquet et al., (2011) shows that the models of pests and diseases often take into account
the landscape. It is evident in the literature that the composition of the landscape plays a
vital role in the abundance of pests(Bianchi et al., 2006, Delaune et al., 2019). However,
efficient models need to take into account other parameters such as weather and a spatial
epidemiology dimension. The landscape composition and dispersal mechanisms have an
essential influence in the dynamics of bio-aggressors, which are considered in the
inferential process (Werf et al., 1989 ,Blangiardo et al., 2013). This approach makes the
combination of time and space important (Delaune et al., 2019). However, studies that
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include the entire range of interactions that have an influence on the presence of pests
and disease are few (Tonnang et al.,, 2017) and they usually focus on a single pest
infestation in relation to a particular crop, or have minimal considerations of time and
space data (Tonnang et al., 2017, Delaune et al., 2019)

However, it is hard to routinely develop mechanistic models accounting even only for
space and time for multiple pests and diseases, statistical models could then be preferable
for large-scale routine approaches.

The autoregressive models are well suited for modelling the presence and abundance of
pests and diseases whose distributions are influenced by external and biological
parameters(van Maanen & Xu, 2003). Several studies have used the autoregressive
models to evaluate the relation between the landscape and pests infestations (Alkindi et
al., 2017). These models are able to integrate the relationship between pest infestations
and farmer practices such pesticide, fungicide use, methods of spraying (Alkindi et al.,
2017) which aligns well with our aim. These autoregressive models are more efficient in
providing the prediction of pests and diseases than simple regression (Vinatier et al.,
2011). The spatial auto regressive process reflects the spatial and temporal correlations
of the disease or pest presence but also in both predictor and response variables, or in
the error term(van Maanen & Xu, 2003). These correlations can be observed for each
variable at different scales or temporal lags (Dormann et al., 2007). The Integrated Nested
Laplace Approximation methodology (INLA method) model is among the auto-regressive
models [a fast approximation of the random field based auto-regressive models] (Bakka
et al., 2018) and is consequently a good candidate for our routine production of pests and
disease models.

However, the methodology of INLA could not be applied fully, due to delays in
communication with other partners of the project due to the unfortunate pandemic of
Coronavirus. This situation required us to adjust our methodological procedure of
analysis. An alternative was chosen to use generalised linear models and the least
absolute shrinkage and selection operator commonly known as LASSO (Robert
Tibshirani, 1996) The application of lasso is essential as it selects the explanatory
variables that have an influence on the response variables (pests and pathogens). A
recent review on statistical modeling techniques by (Kim et al., 2014) reflected that
Bayesian Lasso technique is suitable for the evaluation of crop pests and pathogens.
Additionally, this technique served as prerequisite for Audsley et al.(2005) by developing
a simulation model for foliar disease of wheat linked with yield, to contribute to the disease
management system. Therefore, this paper has followed recent trends in diseases
modelling.

To adjust the statistical models, national scale datasets are available. The agricultural
epidemiological services of the French government have organized the mandatory
recordings and centralization of the observations of pests and diseases since 2008.
Experts in the field on the arable crops carry out the observations. For this study, we
analyse the 30 identified common pests and pathogens of field crops.
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The aim of this study is to predict statistically the presence and abundance for multiple
pests and diseases in cultivated field crops. Our regressions have to account for the
spatial attributes (space and time) and the weather as the bases of the analysis. This
study serves as a prerequisite in order to develop a complex model that can be robust
and efficient. Altogether, several observations different pests and diseases of arable crops
were jointly studied with the climate variables.

2. Materials and methods
2.1 Pests and diseases data

The agricultural epidemiological services of the French government organize and
centralize the mandatory observations of pests and diseases since 2008. The French
agricultural institute ARVALIS-Institut du végétal developed a system called Vigicultures®
to centralize a large share of those observations. Together with an other system
centralizing data on beetroot, this represents data for beetroot, wheat, barely, maize,
potatoes and oilseeds from 2009 to 2018. We attempted unsuccessfully to complement
these data for missing regions with an other system (epyphyt) To feed all these
databases, different plots of crops are chosen every year, georeferenced and visited each
week, to assess the condition of pests and diseases epidemics. Therefore, different
observations are made on each crop, in relation to the condition of pest infestations.
Several institutes contributes to the observations following a set of national protocols.
When several protocols had been used for the same pest, we quantify here the presence
and abundance of each pest and diseases using the metric that had most number of
observations, see table 1 and table 2. In total, 17 diseases affecting winter wheat,
rapeseed, potatoes and beetroot were analysed as well as 13 pests that affects maize,
winter wheat and rapeseed. For common English names of pest and Diseases See, the
supplementary table five.

Potato Winter Barley

Figure 1.Distribution of agricultural plots over French departments (year: 2010-2017)
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Table 1. Pathogens/ diseases data

Crop name Disease ' Observation period> Observation metric®
Winter Wheat  Sepforia tritici March - June % of leaves affected
Puccinia triticina May - June % of leaves affected
Puccinia striiformis March - June % of affected leafs
Fusarium graminearum March - June % of affected plants
Helminthosporium wheat March - June % of affected leafs
Blumeria graminis February - June % of organs affected
Gaeumannomyces graminis February - June % of affected roots
Oculimacula spp March — June % of affected plants
Rapeseed Leptosphaeria maculan February - June % of plants with leaf macules
Sclerotinia sclerotiorum March — May % of plants affected/stem affected
Beetroot Erysiphe betae June - August % of leaves affected
Uromyces betae June — August % of leaves affected-non treated
Cercospora beticola June - August % of leaves affected-non treated
Ramularia betae February - June % of leaves affected-non treated
Winter Barley  Rhynchosporium secalis March — June % of leaves affected
% of leaves leafs
Potatoes Phytophthora infestans May - October % of leaves affected

! Species of interest

2 Observations perfomed by experts between 2010 —

3 Observational metric

Table 2. Pest data

2017

Crop name pests’ Observation period? Obervation metric

Winter wheat Sitodiplosis mosellan March - June #3 captured in yellow trap
Deroceras/arion/limax October - December % plants affected
Rhopalosiphum padi October — December % of affected leafs

Sitobion avenae

Rapeseed

Psylliodes chrysocephala
Phyllotreta nemorum
Ceutorhynchus napi
Ceutorhynchus picitarsis
Ceutorhynchus assimilis
Meligethes aeneus

April — June

September - November
September - November
September - October
September - November
February - April
February - June

# captured in yellow trap

% plants affected

# captured in yellow trap

# captured in traps

# captured in traps

# captured in traps

# Average no. of individuals per plant
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Brevicoryne brassicae February - April

myzus persicae february — June % plants with presence
October - November % plants with presence
Maize
ostrinia nubilalis May - October # captured in traps

! species of interest
2 Observations perfomed by experts between 2010 -2017
% Measured metric

2.2 Climate data

The prediction of pests and diseases were analysed based on the climate data in France
for the period of 2010 - 2017 at the spatial scale of French departments, based on Safran
meteorological model from Météo France. These data initially give all meteorological
variables each day on a grid of 8 km distant points. We used a version of these data
aggregated by month and French department.

The weather inputs include the following parameters: temperature which is decomposed
into average and extremum temperatures (Tmax and Tmin °C), solar radiation,
precipitation, evapotranspiration, the number of days with average temperature between
0 and 10° C, the number of days with precipitation and total precipitation. In addition to
the monthly variable, we also accounted for groups of months: autumn namely October,
November, December (OND) and spring months, April, May, June, July (AMJJ) were
averaged. The climate parameters serve as our explanatory variables in predicting the
presence and abundance of pests and diseases. These parameters were abbreviated for
better visualization on the lasso model; table 3 provides description of the variables.

Table 3. Description of weather variables

Abbreviated variables in the lasso model Description of the weather variables
pr_per Average number of rainy days per month
tx34 and tn17 Number of (non-consecutive) days above

34°C (for tx) and number of (non-
consecutive) days below -17.2°C (for tn).
(lethal temperatures)

tx 0_10 Number of days between 0 and 10°C for Tx
(non-consecutive) (vernalization).

tn Minimum temperature

TX Maximum temperature

Rv radiation

Etp evapotranspiration

Lat latitude

Long longitude
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2.3 Pest or disease abundance quantification

The pest or disease, commonly referred to as the bioagresor, abundance is the response
variable that is calculated from the vigicultures observational metric. For each variable,
we computed the median on all observations across years and points which we applied
as the threshold. For each year of observation, we calculated the number of times the
observations exceeded the threshold as well as the observations below the threshold
creating a binomial variable. The number of positive observations (above threshold)
among the total quantity of observations in a given year.

Nobs. BelowThreshold = Y, value > threshold
&
Nobs. AboveThrehold = Y, value < threshold

2.4 Statistical analysis

The variables were analysed by fitting a generalised linear model (GLM) by means of
penalized maximum likelihood (LASSO) utilizing a binomial model of distribution of the
observations (Delaune et al., 2019). The LASSO technique allow to jointly select variables
and fit models. We used the implementation in the gimnet R package; we use standard
cross-validation procedures to automatize the choice of the most relevant selection level
of the variables. The weather variables were standardized prior to usage in the lasso
regression to allow comparison of the respective impacts of the variables on the presence
of the pests and diseases.

We estimate the quality of the estimates provided by the models by fitting a linear
regression between the observed and the predicted ratios of positive observations over
the total number of observations. The number of observations realized at each point
weights this regression. The datasets of the pests and pathogens was split into train and
hold-out data (20%) in order to evaluate the predictive ability of the model. As this
introduces a share of randomness in the process, we evaluate the consistency of the
predictive ability of the model by running the whole process 600 times on each pests and
pathogen. Therefore we obtained for the adjusted R? (adj R?) the median of the repetitions
from the model and its variation interval given by quantile 2.5% and 97.5 % of the
predicted and observed values. he train data consisted of random observations
amounting to 80% of the data while the test data was 20% of the random observations.

2.5 Lasso Validation

In order to optimize our model for accuracy and better predictive ability we select the
lambda parameter by cross-validation (figure 2).
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Cross deviance validation plot for Septoria tritici
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Figure 2. Cross validation plot for lambda selection of Septoria tritici.

Lambda parameter selection for the lasso model of septoriosis, used 10 folds cross
validation. The two dashed vertical lines shows the two possible choices of the A (lambda).
The left vertical line is the one that minimizes (minimum criteria) the predictive error
(denoted as: Amin) and the one on the right show one standard error of the minimum
criteria (denoted as A1se). The top values reflects the numbers of the variables
(predictors) that have non-zero coefficients.

We made a choice to use the A1se for our validation in order to reduce the overfitting
factor that may occur during the prediction process. This will give a better accuracy on
other datasets.

3. Results

3.1 Pests and diseases model performance

We firstly analysed the prediction model on Septoria of winter wheat. Figure 1 depicts
that the predicted ratios of observations above the threshold (the median of all
observations) for Septoria trtici (leaf blotch) correlates with the corresponding observed
ratios, which serves as an indication that the predictor model achieves a reasonable
goodness of fit.
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Prediction vs observed ratios above threshold

1.0

Observed ratios

Predicted Ratios of observations

Figure 3. Relationship between observed ratios and predicted ratios of observations for
Septoria tritic.

The blue circles are the observed ratios; the black circles are the predicted ratios, with a
line of best fit (1:1 relationship). The radius of the points is proportional to the square root
of the number of observations (figure 3).

The Adjusted R-squared (adj R?) was utilised in order to quantify the presence/prediction
as well as the variability in the response variable shown by the model. The adj R? from the
model of septoria was 0.58 (58%) on data used to fit the model, but went down to 0.50
(50%) for the 20% (n= 96) of holdout data. Therefore, our model was able to account for
58% of the variation explained by our regression line out of the total variation. The R? of
0.50 is a moderate value that further accounts that there are other variables responsible
for the presence of Septoria, although we have a significant trend with climate parameters.

3.2 Lasso coefficients

The lasso model extracted the climatic parameters that have an influence on the presence
of septoria (figure3).

The lower temperature in January, February, March andNovember, favors the occurrence
of Septoria in winter wheat. Increased precipitation in February, March, and April provides
suitable conditions for the occurrence of Septoria.

Precipitation in July, October, November, reduces the risk of Septoria in wheat. The
minimum temperature in September also decreases the risk of Septoria. The number of
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days where the Minimum temperature was -17°C decreased the presence of Septoria as
well as the number of days where the temperature was between 0 and 10°C for October,
November, and December

Lasso plot for Septoria tritici

lasso

tx_Dec+
tx_Aug -

e 0 _10_Sep-
t_0_10_OND -
t_0_10_May -
tn17_Feb ~
tn_Sep-
tn_Mov <
tn_JFM 4
tn_Jan -
tn_Feb 4
pr_per_May -
pr_per_Jul -

feature

pr_per_Apr-
pr_0Oct 4
pr_May -
per_OMND -
lat -

etp_Oct +
etp_May -

etp_Jun 4

-0.1 0.0 0.1 0.2
coefficient

Figure 4. Lasso model with climatic variables for Septoria tritici.

The lasso model of Septoria tritici with climatic variables show the coefficients that have
an influence on the presence of the pathogen. The positive coefficients imply increased
risk of Septoria tritici, while the negative coefficients imply lower risk of Septoria tritici.

The latitude is a major determinant of the presence of Septoria in our data. This is
understandable as in metropolitan France; increased latitudes increase the likelihood of
lower temperatures and higher precipitations. It is noticeable that the meteorological
variables have an impact further and beyond the impact of the latitude. The Ilatitude, the
average number of rainy days in May and the minimum temperature in November are the
main determinants in the presence of Septoria.
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3.4 Summary of the results for the rest of the diseases models.
Such models have been run independently for the thirty pests and diseases studied. We

summarise hereafter the quality of the fit reached for each of these models (table4 and
5).

Table 4. The proportion of the variation explained by the models for different pathogens

Crop name Name of the disease R? R?
(Train)2 (Test)®
Winter Wheat Septoria tritici 58.6 [51.6,64.4] 50.3[31.2, 64.6]
Puccinia triticina 62.6 [50.8, 69] 52.7[25.4,71.3]
Puccinia striiformis 59.4 [50.5,65.6] 49.4[23.2,69.2]
Fusarium graminearum 24.8 [11.5,41] 14.9[1.4,32.9]
Helminthosporium wheat 23.2 [17.6,30.2] 16 [5.1, 30]
Blumeria graminis 0 [0, 34.8] 0 [0, 2.6]
Gaeumannomyces graminis 0 [0, 27.6] 0[-1.5,12]
Oculimacula spp 25.1[14.6, 33.2] 17.7 [5, 34]
Rapeseed Leptosphaeria maculan 0 0
Sclerotinia sclerotiorum 46 [40.4, 50.5] 39.4 [22.5, 53.4]
Beetroot Erysiphe betae 0 0
Uromyces betae 87.9 [0, 95.3] 64.1 [-45.8 ,98]
Cercospora beticola 73.3 [0, 95.6] 0 [-49.1, 91.3]
Ramularia betae 0 0
Winter Barley Rhynchosporium secalis 55.1[49.9,59.7] 49[31.5,64.1]
Helminthosporium (oat) 24.9 [13.4, 34.5] 12.6 [1.1, 28.9]
Potatoes Phytophthora infestans 86.3[75.8,95 62.5[5.6,90.7]

a The adjusted R squared for train data given as the median based on repetitions of the
model, with quantiles of 2.5% to 97.5 %

b The adjusted R squared for test data given as the median based on repetitions of the
model, with quantiles of 2.5% to 97.5 %

Table . The proportion of variation explained by the models for different pests.

Crop name

Name of the disease

RZ

R2
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(Train)? (Test)®

Winter Wheat Sitodiplosis mosellan 0 0
Deroceras/arion/limax 45.2[39.7,51.1] 35.8[19.2, 50.1]
Rhopalosiphum padi 32[18.6, 44.7] 19 [3.8, 38.8]
Sitobion avenae 17.7 [0, 24.7] 11.8 [0, 28]

Rapeseed Psylliodes chrysocephala 66 [61.6, 69.7] 61.3 [47.2, 72.4]
Phyllotreta nemorum 20.7 [16.8, 26.5] 17.4 [5.2, 32]
Ceutorhynchus napi 457 [40.2,50.4] 39.6[23.7, 56.3]
Ceutorhynchus picitarsis 62 [54.6, 70.9] 50.7 [35.3, 64.1]
Ceutorhynchus assimilis 23.2[14.8,31.9] 14.1][2.5, 31.3]
Meligethes aeneus 51.6 [47 .4, 56] 46 [31.2, 60.6]
Brevicoryne brassicae 19.9[13.7,33.7] 12.7[1.6, 33.4]
myzus persicae 56.9[494,64.4] 45.9]27.3,63.2]

Maize Ostrinia nubilalis 21.4 [0, 49.4] 11.2 [-0.8, 30.8]

aThe adjusted R squared for train data given as the median based on repetitions of the
model, with quantiles of 2.5% to 97.5 %

bThe adjusted R squared for test data given as the median based on repetitions of the
model, with  quantiles of 2.5% to 97.5 %

The maijority of the diseases and pest models achieved a reasonable goodness of fit;
however, for a small quantity of diseases the evaluation of goodness of fit was not
achieved. The Adjusted R? varied from 0% in the Leptosphaeria maculan, Erysiphe betae,
Ramularia betae to 87% in Cercospora beticola of diseases models (table 4). For the pest
models the values range from 0% in Sitodiplosis mosellan to 66 % in Psylliodes
chrysocephala model (table 5). In average, we were able to explain 36.8% of diseases
(pathogens) presence variation and 35.5 % of pest presence variation. Most of the
adjusted R2decreased when considering the hold data. This indicates that, there are other
factors apart from the climate parameters that have an influence on the abundance and
presence of pest and pathogens of field crops.

3.5 Climatic Parameters

The lasso model was able to extract the explanatory variables from the weather climate
data. These parameters are provided in the supplementary table 6 for each pest or
disease. The parameters that are found to be influential for predicting the presence of
dieases and pests vary among the models. For the pathogens models we were able to
extract influential variables for 14 of the 16 pathogens (81%) and 12 pests out of 13,
(92%).

We summarised the essential parameters by the magnitude of their impact, on the

presence and abundance of particular pest and pathogen. For the pathogen models the
following parameters were often:
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Maximum temperature in October (Tx= Tmax °C)
Minimum temperature in January, March, July
Number of days between 0 and 10 °C for April
Precipitation in June, December and January

For pest models, the following parameters have a major influence on the presence and
abundance:

= Evapotranspiration in January and March

= Temperatures between 0 and 10 in February and July

= Radiation in March, December

=  Minimum temperature in July

=  Maximum temperature in October, February, August, January

4. Discussion

The study highlighted that the climatic parameters have significant effects on the presence
and abundance of most of the 30 selected pest and pathogens on field crops as
observedover several years of field observations. These parameters are essential as they
affect both host crops and pests/pathogens, making the interaction more complex figure
3 (Olatinwo & Hoogenboom, 2014). An example of such interaction is highlighted by
Fones & Gurr, (2015), who showed the presence of septoria tritici is well influenced by the
leaf moisture and consecutive number of rainy days in order to spread throughout the
hosts crops. Additionally the pathogens/ diseases that affect the aerial parts of the crops
are a subject of interaction with climatic conditions such as Erysiphe betae (powdery
mildew) (Kumar, 2016). Temperature is also shown to play a vital role for the stripe rust of
wheat which is caused by Puccinia striiformis, however canopy temperature has a role in
stripe rust which indicates the complex interactions of the host crops and its pathogens
(Cheng et al., 2015). These findings are also in agreement with a study by Chaloner et
al., (2019) which highlights the role of temperature and rainfall on the initial occurrence
and development of the pathogens including septoria tritici. This condition shows the
dependence of the pathogen on complex factors that are not limited to temperature but
include moisture and light which is linked to the evapotranspiration mechanism (indicated
by etp in the figure 2). Therefore, our study is part of the several attempts that are being
applied in order to model and understands the prediction and effects of the weather on
the presence of pests and pathogens.

Host crops

Diseases

) o Pest/ Pathogen
Climate conditions
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Figure 5. Schematic representation of the relationship between host, climate and pets/pathogens
(N.Vharddwick, 1998)

Beest et al. (2009) Reported a positive predictive proportion of 0.61 based on the
relationship between weather and occurrence of Septoria tritici which is in line with our
predictive proportion of 0.58 — 0.64. This indicates that our model was able to perform
fairly. However, most of the published models took into account the experimental
observations under controlled conditions and resistant cultivars e.g. greenhouses, which
is not the case for our study. This also accounts for a lot of variation within our proportions
and published proportions. The typical differences are also highlighted by (Velasquez et
al., 2018), that the rate of inoculation for rust caused by Puccinia striiformis differed in
laboratory from in the fields, the controlled temperature of 21 °C at laboratory did not
cause any infections whereas in the fields the infection occurred even when temperature
is not constant (18°C - 30°C).

It is shown, in the literature that favorable warm climate or gentle winter conditions that
supports the occurrence of pests and pathogens are known to expand the utilization of
synthetic chemicals (Olatinwo & Hoogenboom, 2014). Therefore, the ability to estimate
future presence based on the trend of climate for particular regions is a crucial activity that
will give timing and awareness to farmers.

Our study highlights that temperature and rainfall forms part of the most important
variables that affects crop pests and pathogens interactions. Most of the presence is
linked with favourable weather conditions/patterns such as a rise in humidity, early or late
rains (Olatinwo & Hoogenboom, 2014,Skellern et al., 2017, Pandey et al., 2017). The
influence of temperature and rainfall on the occurrence of pests as well as their population
with the ability of spreading throughout the crops is summarised, see table 6 (Kumar,
2016).

Table 5. The influence of several climatic parameters on pests.

Climatic parameter Influence on pests/ diseases

Temperature (Tmax & Tmin) Formative rate of pests

Precipitation (rainfall) Oviposition, adult appearance/emergence,
Water vapour Egg hatch

Microclimatic variables such as leaf wetness, | Spread and developmental rate of pests and
humidity etc. pathogens

4.1 Temperatures

Our regression model was able to select the temperature with its cardinals (minimum and
maximum) for the majority pests and diseases. It is determined that for Septoria, eyespot,
Sitobion avenae (grain aphid), Bird cherry-oat aphid, limace (slug), Silver scurf, are some
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of the diseases that are hugely influenced by temperature, this include the minimum
temperatures in January, November, September and maximum temperatures in October
and February. High temperatures are essential for the rate of inoculum development in
barely powdery mildew (Kumar, 2016). However, low temperatures can support the
longevity of certain diseases and spore formation on crops. For example: Phytophthora
infestans ( Potato late blight) may produce spores at low temperatures, as the optimum
temperature for germination of potato leaf blight is about 13°C (Kumar, 2016). Winter
warmth is additionally known to move the phenology of bugs and pathogens resulting in
colonization of crops and earlier spreading of diseases (Ben-Ari et al., 2018). Itis essential
to mention that a lot of variables in the fall season are important, as they influence the
occurrence of diseases.

4.1 Precipitation

Precipitation/rainfall (denoted by pr in our lasso model) or determined moisture
encourages the development and dispersal of contagious diseases among crops in spring
(Ben-Ari et al., 2018). Our models lead us into a convincible speculation that mild
autumn/winter favors a development of pathogens and constancy of inoculum (Ben-Ari et
al., 2018). It is evident that moisture plays a vital role in order for the infection to occur,
especially for foliar pathogens such as Erysiphe betae (powdery mildew) (Bebber, 2015).
The wet periods, which are linked to the leaf area by creating a wet surface influences the
fungal infections, an example, the rust fungus caused by Puccinia striiformis only, need
the minimum of 5 hours of leaf wetness for infection to happen (Velasquez et al., 2018).
The duration of leaf wetness that resembles the formation of pathogens is affected by the
dew accumulation in leaves, that it is longer as a results of dew formation (Rowlandson
et al., 2015). The pathogen infection rises at maximum temperatures due to the air’s ability
to hold more water vapor at extreme temperatures (Velasquez et al., 2018). Furthermore,
the severity of Sclerotina sclerotiorum increases as the air humidity rises (Velasquez et
al., 2018). However, the mechanism of such infections depend on the characteristics of
pests and pathogens as some can form spores at low relative humidity. We therefore,
highlight that knowledge about the frequent diseases of the common crops mentioned in
this paper is essential.

Our models also picked up the effect of radiation and evapotranspiration in some of the
diseases (Rape flea beetle, Rape steem weevil, etc). The evapotranspiration process is
influenced by radiation, air temperature and humidity (Todorovic, 2005). However, this
process is associated with abiotic stress factors that have negative impacts on the studied
crops. Excessive demand of evapotranspiration due to higher temperatures places an
immense pressure on the crop cells that pave the way for the invasion of pathogens and
pests hence some of models highlighted this effect. These parameters are more frequent
and evident although in less magnitude in pests’ models (Brevicoryne brassicae,
Meligethes aeneus, Ceutorhynchus napi, Psylliodes chrysocephala). It shows that this
factors have an influence on the growth and reproduction ability of the pests (their
population as whole as well as the distribution among field crops), which in turn could
have negative impacts on the crops.
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4.2 The effect of the geographical points (latitude and longitude)

Among the models that we fitted, few reflected the effect of the latitude and longitude of
the geographical points. Latitude is the most important in Septoria tritici (Septoria leaf
blotch), Sclerotinia sclerotiorum (white mold), Rhynchosporium secalis (Barely scald),
Phytophthora infestans (Potato late blight). As mentioned in the results, the increased
latitude in the Metropolitan of France favors the lower temperatures and higher
precipitations providing favourable conditions for the mentioned pathogens. This includes
the distribution of pests among filed crops, it all amounts back to the importance of
temperature and humidity but might describe permanent patterns over the years leading
to different average levels of inoculums at the beginning of the crop year in different
regions.

4.3 Methodological considerations

Our models did not allow predictions for all of the 30 diseases. None of the variables were
selected to predict the abundances of Leptosphaeria maculans, Erysiphe betae,
Ramularia betae and Sitodiplosis mosellan. This does not necessarily imply that the
weather parameters are not influential as the number of observations of the variability in
the observations might not have been enough to fit these models. In particular, It is well
known that Leptosphaeria maculans has not been a major issue in the studied years due
to excellent varietal resistances to this disease. There is evidence in the literature that
this pests are influenced by the interaction of precipitation and temperature in terms of
their population and survival rate (Miao et al., 2019). Therefore, our modeling can be
improved by adding more data in order to capture all of the pests and pathogens, adding
other places of Europe or more years might solve this issue

Further adaptations are possible by increasing the number of explanatory variables
(adding for example the wind or the composition of the environnement (Delaune et al.,
2019) or taking into account that some variable might have a non-linear relationship with
the diseases and pests. For example, the rainfall has a non-linear relationship with the
occurrence of some pests and pathogens. This means that when precipitation occurs,
several pathogens may occur, but when precipitation cease then the occurrence of such
pests may disappear. This phenomenon is highlighted in the study Tydesley et al. (1980)
that the occurance of Sptoria tritici is hugely influenced by rainfall, which may also
increase the risk of rust development. It is stated that the less rainfall or minimal irrigation
may reduce the risk of Septoria tritici. Though that will add the weather variables in our
models, it is essential to be considered.

The modelling applied in this study is rather simple than complex. The results and
methods of this study could be used as a basis to develop the autoregressive models that
are more complex than the applied general linear modelling for this paper. Importantly, the
auto-regressive models would allow to partly reflecting epidemiological dynamics between
points. The other notion is the prediction based on the phenological stages of crops. Itis
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essential as the pests and pathogens attack the crops at different stages therefore,
knowing which stage is susceptible will be of essence.

5. Conclusion and perspectives

Our study highlighted that temperature with its cadinals (Tmax and Tmin °C) and rainfall
are the major determinants of the presence and occurrence of pests and pathogens. The
interaction of pathogens and hosts crops is complex and essential in understanding the
abundance of the diseases. The models gave various variations of positive proportions,
which also highlight that climatic conditions are part of the contributions to crop diseases.
Therefore, an interaction study of various components such as landscape, climatic
parameters that play a vital role in the occurrence of diseases will be a step forward.
Interaction between crop modeling experts, agronomist, farmers and biologist is
important.

The study had an underlying aim to contribute to the management of diseases in a more
sustainable way that is to limit the application of pesticides. It is known that at times the
application of such chemicals are not essential when the diseases are not severe or
detrimental to crops. Therefore, awareness about such parameters that have high
magnitude on crops is important. This type of predictions or early warnings of the invasion
of diseases could serve as an advantage to avoid yield loss.

6. Supplementary material

Table 6. Common names of pest and diseases

Latin Common english name
Septoria tritici Septoria leaf blotch
Puccinia triticina Brown rust

Puccinia striiformis Yellow rust

Fusarium graminearum Fusarium wilt
Helminthosporium wheat Silver scurf

Blumeria graminis Brely powdery mildew
Gaeumannomyces graminis | Take-all

Oculimacula spp Eyespot
Leptosphaeria maculans Blackleg disease
Sclerotinia sclerotiorum White mold

Erysiphe betae Beet powdery mildew
Uromyces betae Beet rust

Cercospora beticola Cercospora leaf spot
Ramularia betae Ramularia leaf spot
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Observed ratios

Rhynchosporium secalis Barely scald
Helminthosporium (oat) Silver scurf
Phytophthora infestans Potato late blight
Sitodiplosis mosellan Gall midges
Deroceras/arion/limax Slug

Rhopalosiphum padi Bird cherry-oat aphid

Sitobion avenae

Aphid

Psylliodes chrysocephala

Rape flea beetle

Phyllotreta nemorum

Turnip flea beetle

Ceutorhynchus napi

Rape steem weevil

Ceutorhynchus assimilis

Cabbage seed weevil

Ceutorhynchus picitarsis Rape weeuvil
Meligethes aeneus Pollen beetle
Brevicoryne brassicae Cabbage aphid
myzus persicae Green peach aphid
ostrinia nubilalis Corn borer
scleretonia
lasso
Prediction vs observed ratios above threshold i Octy
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