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Abstract 
It is well documented that the pest and pathogens affect the status of field crops, resulting 
in lower yields. These factors provide an incentive for farmers to use synthetic chemicals 
such as pesticides and fungicides. However, such control mechanism have detrimental 
repercussions on the environment and the health of the farmers being the first to be 
exposed. The aim of this study is to predict statistically the presence and abundance for 
multiple pests and diseases in cultivated field crops based on climate parameters. The 
statistical models could provide aid to farmers in order to construct better control 
mechanisms and assist in the process of decision-making. Our methodology depended 
on the examination of the French epidemiological data, consisting of 9 years of 
observations. Thirty-(30), major pathogens and pests of field crops (winter wheat, 
rapeseed, potato, maize and barely) were jointly analyzed with the climate variables. For 
most of them, no predictive models existed. Explanatory variables from the weather data 
that favor the occurrence of the diseases were selected by the Lasso regression. The 
regression selects temperature and rainfall as the major determinants of the occurrence. 
The geographical points (longitude and latitude) of the observations are also selected in 
some models including Septoria tritici, Sclerotinia sclerotiorum, Phytophthora infestans 
etc. On average, we were able to explain 36.8% of diseases (pathogens) presence 
variation and 35.5 % of pest presence variation. The occurrence of diseases consists of 
the interaction between pests/pathogens, host crops and environmental conditions. This 
complex interaction calls for an integration between crop modellers, agronomist and 
biologist to enhance knowledge and awareness to farmers.   

Key words: Regression, Temperature, Rainfall, Pathogens, Pests 

Résumé 
Il est établi que les ravageurs et les agents pathogènes affectent l'état des cultures, 
entraînant une baisse des rendements. Ces facteurs incitent les agriculteurs à utiliser des 
produits chimiques de synthèse tels que les pesticides et les fongicides. Cependant, ces 
produits entraînent des répercussions néfastes sur l'environnement ainsi que sur la santé 
des agriculteurs, ces dernier étant les premiers à y être exposés. L'objectif de cette étude 
est de prédire statistiquement la présence et l'abondance de divers ravageurs et maladies 
dans les cultures en se basant sur des paramètres climatiques. Les modèles statistiques 
fournissent un soutien aux agriculteurs afin de construire de meilleurs mécanismes de 
contrôle et d'aider au processus de prise de décision. Notre méthodologie s'est appuyée 
sur l'examen des données épidémiologiques françaises constituées de 9 années 
d'observations. Trente (30) pathogènes et ravageurs majeurs de cultures (blé d'hiver, 
colza, pomme de terre, maïs et orge) ont été analysés conjointement avec les 
composantes climatiques.  Les variables explicatives des données météorologiques 
favorisant l'apparition des maladies ont été sélectionnées par la régression Lasso. La 
régression sélectionne la température et les précipitations comme principaux 
déterminants de l'apparition des maladies. Les points géographiques (longitude et 
latitude) des observations sont également sélectionnés dans certains modèles dont 
Septoria tritici, Sclerotinia sclerotiorum, Phytophthora infestans, etc. En moyenne, nous 
avons pu expliquer 36,8 % de la variation de présence de maladies (pathogènes) et 
35,5 % de la variation de présence de ravageurs. L'apparition des maladies est due à 
l'interaction entre ravageurs/pathogènes, les cultures hôtes et les conditions 
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environnementales. Cette interaction complexe nécessite une intégration entre les 
modélisateurs de cultures, les agronomes et les biologistes afin d'améliorer les 
connaissances des agriculteurs et les sensibiliser. 

Mots clés : Régression, Température, Précipitations, Pathogènes, Ravageurs 
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1. Introduction 

Bio-aggressors such as pests, pathogens and diseases are among factors that affect the 
status of field crops (wheat, rapeseed, maize, etc) (Donatelli et al., 2017). These factors 
are a burden to farmers, and have detrimental repercussions on several components such 
as yield, with an economical origin. The bio-aggressors provide an incentive for farmers 
to apply phytosanitary products on field crops. The application of such products has raised 
a global concern over the human health and environmental status (Rizzati et al., 2016). 
France's farming system is ranked third in the world for the use of phytosanitary products 
(Jacquet et al., 2011). Therefore, several studies have proposed the possibility of reducing 
the use of synthetic chemicals on field crops, which will have a positive impact on the 
environment, the health of the farmers and local residents, as well as the biodiversity 
(Pelosi et al., 2013, Jacquet et al., 2011, Delaune et al., 2019). Reducing the use of 
pesticides and fungicides may be achieved through various farming practices that will 
favor the natural control of pests and diseases (Delaune et al., 2019) and resilience of 
crops to the pests and diseases (Perez-Hedo et al., 2017). 

Statistical tools including the epidemiological models are regarded as a way to estimate 
and predict the presence of pests and diseases. The models provide aid to farmers in 
order to construct better control mechanisms and assist in the process of decision-making 
(Dalal & Singh, 2017). The study by Tonnang et al. (2017) depicts that the diseases and 
pest forecasting brings awareness of the actual timing of incidence. This approach helps 
in achieving quality results in terms of control strategies, and help avoid applying 
pesticides when the risks are low, with positive impact on economic aspects and 
environmental benefits. This process is critical as it leads to a sustainable pest control 
management (Tonnang et al., 2017). 

Jacquet et al., (2011) shows that the models of pests and diseases often take into account 
the landscape. It is evident in the literature that the composition of the landscape plays a 
vital role in the abundance of pests(Bianchi et al., 2006, Delaune et al., 2019). However, 
efficient models need to take into account other parameters such as weather and a spatial 
epidemiology dimension. The landscape composition and dispersal mechanisms have an 
essential influence in the dynamics of bio-aggressors, which are considered in the 
inferential process (Werf et al., 1989 ,Blangiardo et al., 2013). This approach makes the 
combination of time and space important (Delaune et al., 2019). However, studies that 
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include the entire range of interactions that have an influence on the presence of pests 
and disease are few (Tonnang et al., 2017) and they usually focus on a single pest 
infestation in relation to a particular crop, or have minimal considerations of time and 
space data (Tonnang et al., 2017, Delaune et al., 2019) 

However, it is hard to routinely develop mechanistic models accounting even only for 
space and time for multiple pests and diseases, statistical models could then be preferable 
for large-scale routine approaches. 

The autoregressive models are well suited for modelling the presence and abundance of 
pests and diseases whose distributions are influenced by external and biological 
parameters(van Maanen & Xu, 2003). Several studies have used the autoregressive 
models to evaluate the relation between the landscape and pests infestations (Alkindi et 
al., 2017). These models are able to integrate the relationship between pest infestations 
and farmer practices such pesticide, fungicide use, methods of spraying (Alkindi et al., 
2017) which aligns well with our aim. These autoregressive models are more efficient in 
providing the prediction of pests and diseases than simple regression (Vinatier et al., 
2011). The spatial auto regressive process reflects the spatial and temporal correlations 
of the disease or pest presence but also in both predictor and response variables, or in 
the error term(van Maanen & Xu, 2003). These correlations can be observed for each 
variable at different scales or temporal lags (Dormann et al., 2007). The Integrated Nested 
Laplace Approximation methodology (INLA method) model is among the auto-regressive 
models [a fast approximation of the random field based auto-regressive models] (Bakka 
et al., 2018) and is consequently a good candidate for our routine production of pests and 
disease models. 

However, the methodology of INLA could not be applied fully, due to delays in 
communication with other partners of the project due to the unfortunate pandemic of 
Coronavirus. This situation required us to adjust our methodological procedure of 
analysis. An alternative was chosen to use generalised linear models and the least 
absolute shrinkage and selection operator commonly known as LASSO (Robert 
Tibshirani, 1996) The application of lasso is essential as it selects the explanatory 
variables that have an influence on the response variables (pests and pathogens). A 
recent review on statistical modeling techniques by (Kim et al., 2014) reflected that 
Bayesian Lasso technique is suitable for the evaluation of crop pests and pathogens. 
Additionally, this technique served as prerequisite for Audsley et al.(2005) by developing 
a simulation model for foliar disease of wheat linked with yield, to contribute to the disease 
management system. Therefore, this paper has followed recent trends in diseases 
modelling. 

To adjust the statistical models, national scale datasets are available. The agricultural 
epidemiological services of the French government have organized the mandatory 
recordings and centralization of the observations of pests and diseases since 2008. 
Experts in the field on the arable crops carry out the observations. For this study, we 
analyse the 30 identified common pests and pathogens of field crops.    
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The aim of this study is to predict statistically the presence and abundance for multiple 
pests and diseases in cultivated field crops. Our regressions have to account for the 
spatial attributes (space and time) and the weather as the bases of the analysis. This 
study serves as a prerequisite in order to develop a complex model that can be robust 
and efficient. Altogether, several observations different pests and diseases of arable crops 
were jointly studied with the climate variables. 

2. Materials and methods 

2.1 Pests and diseases data 

The agricultural epidemiological services of the French government organize and 
centralize the mandatory observations of pests and diseases since 2008. The French 
agricultural institute ARVALIS-Institut du végétal developed a system called Vigicultures® 
to centralize a large share of those observations. Together with an other system 
centralizing data on beetroot,  this represents data for beetroot, wheat, barely, maize, 
potatoes and oilseeds from 2009 to 2018. We attempted unsuccessfully to complement 
these data for missing regions with an other system (epyphyt)  To feed all these 
databases, different plots of crops are chosen every year, georeferenced and visited each 
week, to assess the condition of pests and diseases epidemics. Therefore, different 
observations are made on each crop, in relation to the condition of pest infestations. 
Several institutes contributes to the observations following a set of national protocols. 
When several protocols had been used for the same pest, we quantify here the presence 
and abundance of each pest and diseases using the metric that had most number of 
observations, see table 1 and table 2.  In total, 17 diseases affecting winter wheat, 
rapeseed, potatoes and beetroot were analysed as well as 13 pests that affects maize, 
winter wheat and rapeseed. For common English names of pest and Diseases See, the 
supplementary table five. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.Distribution of agricultural plots over French departments (year: 2010-2017) 

Potato Maize Winter Barley 

Rapeseed Beetroot 
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Table 1. Pathogens/ diseases data 

Crop name Disease 1 Observation period2 Observation metric3 

Winter Wheat 
 
 
 
 
 
 
 
 
Rapeseed 
 
 
Beetroot 
 
 
 
 
Winter Barley 
 
 
Potatoes 

Septoria tritici 
Puccinia triticina 
Puccinia striiformis 
Fusarium graminearum 
Helminthosporium wheat 
Blumeria graminis 
Gaeumannomyces graminis 
Oculimacula spp 
 
Leptosphaeria maculan 
Sclerotinia sclerotiorum 
 
Erysiphe betae 
Uromyces betae 
Cercospora beticola 
Ramularia betae 
 
Rhynchosporium secalis 
 
 
Phytophthora infestans                 
 

March - June 
May - June 
March - June 
March - June 
March - June 
February - June 
February - June 
March – June 
 
February - June 
March – May 
 
June - August 
June – August 
June - August 
February - June 
 
March – June 
 
 
May - October 

% of leaves affected 
% of leaves affected 
% of affected leafs 
% of affected plants 
% of affected leafs 
% of organs affected 
% of affected roots 
% of affected plants 
 
% of plants with leaf  macules 
% of plants affected/stem  affected 
 
% of leaves affected 
% of leaves affected-non  treated 
% of leaves affected-non treated 
% of leaves affected-non treated 
 
% of leaves affected 
% of leaves leafs 
 
% of leaves affected 

 

 

 

Table 2. Pest data 

Crop name pests1 Observation period2 Obervation metric 

Winter wheat 
 
 
 
Rapeseed 
 
 
 
 
 
 

Sitodiplosis mosellan 
Deroceras/arion/limax 
Rhopalosiphum padi 
Sitobion avenae 
 
Psylliodes chrysocephala 
Phyllotreta nemorum 
Ceutorhynchus napi 
Ceutorhynchus picitarsis 
Ceutorhynchus assimilis 
Meligethes aeneus 

March - June 
October - December 
October – December 
April – June 
 
September - November 
September - November 
September - October 
September - November 
February - April 
February - June 

 #3 captured in yellow trap 
% plants affected 
% of affected leafs 
# captured in  yellow trap 
 
% plants affected 
# captured in yellow trap 
# captured in traps 
# captured in traps 
# captured in traps 
# Average no. of individuals per plant 

1 Species of interest 
2 Observations perfomed by experts between 2010 – 2017 
3 Observational metric 
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Maize 
 
 

Brevicoryne brassicae 
myzus persicae 
 
 
ostrinia nubilalis 

February - April 
february – June 
October - November 
 
May - October 

 
% plants with presence 
% plants with presence 
 
# captured in traps 

 

 

2.2 Climate data 

The prediction of pests and diseases were analysed based on the climate data in France 
for the period of 2010 - 2017 at the spatial scale of French departments, based on Safran 
meteorological model from Météo France. These data initially give all meteorological 
variables each day on a grid of 8 km distant points. We used a version of these data 
aggregated by month and French department.   

The weather inputs include the following parameters: temperature which is decomposed 
into average and extremum temperatures (Tmax and Tmin °C), solar radiation, 
precipitation, evapotranspiration, the number of days with average temperature between 
0 and 10° C , the  number of days with precipitation and total precipitation. In addition to 
the monthly variable, we also accounted for groups of months: autumn namely October, 
November, December (OND) and spring months, April, May, June, July (AMJJ) were 
averaged. The climate parameters serve as our explanatory variables in predicting the 
presence and abundance of pests and diseases. These parameters were abbreviated for 

better visualization on the lasso model; table 3 provides description of the variables. 

Table 3. Description of weather variables 

Abbreviated variables in the lasso model Description of the weather variables 

pr_per Average number of rainy days per month 

tx34 and tn17 Number of (non-consecutive) days above 
34°C (for tx) and number of (non-
consecutive) days below -17.2°C (for tn). 
(lethal temperatures) 

tx_0_10 Number of days between 0 and 10°C for Tx 
(non-consecutive) (vernalization). 

tn Minimum temperature 

Tx Maximum temperature 

Rv radiation 

Etp evapotranspiration 

Lat latitude 

Long longitude 

 
 
 

1 species of interest 
2 Observations perfomed by experts between 2010 -2017 
3 Measured metric 
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2.3 Pest or disease abundance quantification 

 
The pest or disease, commonly referred to as the bioagresor, abundance is the response 
variable that is calculated from the vigicultures observational metric. For each variable, 
we computed the median on all observations across years and points which we applied 
as the threshold. For each year of observation, we calculated the number of times the 
observations exceeded the threshold as well as the observations below the threshold 
creating a binomial variable. The number of positive observations (above threshold) 
among the total quantity of  observations in a given year. 
 

𝑁𝑜𝑏𝑠. 𝐵𝑒𝑙𝑜𝑤𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = ∑𝑣𝑎𝑙𝑢𝑒 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  
 &    

 𝑁𝑜𝑏𝑠. 𝐴𝑏𝑜𝑣𝑒𝑇ℎ𝑟𝑒ℎ𝑜𝑙𝑑 = ∑𝑣𝑎𝑙𝑢𝑒 ≤ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 
                                           
2.4 Statistical analysis 
 
The variables were analysed by fitting a generalised linear model (GLM) by means of 
penalized maximum likelihood (LASSO) utilizing a binomial model of distribution of the 
observations (Delaune et al., 2019). The LASSO technique allow to jointly select variables 
and fit models. We used the implementation in  the glmnet R package; we use standard 
cross-validation procedures to automatize the choice of the most relevant selection level 
of the variables. The weather variables were standardized prior to usage in the lasso 
regression to allow comparison of the respective impacts of the variables on the presence 
of the pests and diseases. 
We estimate the quality of the estimates provided by the models by fitting a linear 
regression between the observed and the predicted ratios of positive observations over 
the total number of observations. The number of observations realized at each point 
weights this regression. The datasets of the pests and pathogens was split into train and 
hold-out data (20%) in order to evaluate the predictive ability of the model.  As this 
introduces a share of randomness in the process, we evaluate the consistency of the 
predictive ability of the model by running the whole process 600 times on each pests and 
pathogen. Therefore we obtained for the adjusted R2 (adj R2)  the median of the repetitions 
from the model and its variation interval given by quantile 2.5% and 97.5 % of the 
predicted and observed values.  he train data consisted of random observations 

amounting to 80% of the data while the test data was 20% of the random observations. 

2.5 Lasso Validation 

 
In order to optimize our model for accuracy and better predictive ability we select the 
lambda parameter by cross-validation (figure 2).   
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Cross deviance validation plot for Septoria tritici 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Cross validation plot for lambda selection of Septoria tritici. 

Lambda parameter selection for the lasso model of septoriosis, used 10 folds cross 
validation. The two dashed vertical lines shows the two possible choices of the λ (lambda). 
The left vertical line is the one that minimizes (minimum criteria) the predictive error 
(denoted as: λmin) and the one on the right show one standard error of the minimum 
criteria (denoted as λ1se). The top values reflects the numbers of the variables 
(predictors) that have non-zero coefficients.   
 
We made a choice to use the λ1se for our validation in order to reduce the overfitting 
factor that may occur during the prediction process. This will give a better accuracy on 
other datasets. 

3. Results 

3.1 Pests and diseases model performance 

We firstly analysed the prediction model on Septoria of winter wheat.  Figure 1 depicts 
that the predicted ratios of observations above the threshold (the median of all 
observations) for Septoria trtici (leaf blotch) correlates with the corresponding observed 
ratios, which serves as an indication that the predictor model achieves a reasonable 
goodness of fit. 
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Figure 3. Relationship between observed ratios and predicted ratios of observations for 

Septoria tritic. 

The blue circles are the observed ratios; the black circles are the predicted ratios, with a 
line of best fit (1:1 relationship). The radius of the points is proportional to the square root 
of the number of observations (figure 3).  
The Adjusted R-squared (adj R2) was utilised in order to quantify the presence/prediction 
as well as the variability in the response variable shown by the model. The adj R2 from the 
model of septoria was 0.58 (58%) on data used to fit the model, but went down to 0.50 
(50%) for the 20% (n= 96) of holdout data. Therefore, our model was able to account for 
58% of the variation explained by our regression line out of the total variation. The R2 of 
0.50 is a moderate value that further accounts that there are other variables responsible 
for the presence of Septoria, although we have a significant trend with climate parameters. 
 

3.2 Lasso coefficients 

 
The lasso model extracted the climatic parameters that have an influence on the presence 
of septoria (figure3). 
The lower temperature in January, February, March andNovember, favors the occurrence 
of Septoria in winter wheat. Increased precipitation in February, March, and April provides 
suitable conditions for the occurrence of Septoria. 
Precipitation in July, October, November, reduces the risk of Septoria in wheat. The 
minimum temperature in September also decreases the risk of Septoria. The number of 
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days where the Minimum temperature was -17°C decreased the presence of Septoria as 
well as the number of days where the temperature was between 0 and 10°C for October, 
November, and December 

 

Lasso plot for Septoria tritici  

 Figure 4. Lasso model with climatic variables for Septoria tritici. 

The lasso model of Septoria tritici with climatic variables show the coefficients that have 

an influence on the presence of the pathogen. The positive coefficients imply increased 

risk of Septoria tritici, while the negative coefficients imply lower risk of Septoria tritici. 

 
The latitude is a major determinant of the presence of Septoria in our data. This is 
understandable as in metropolitan France; increased latitudes increase the likelihood of 
lower temperatures and higher precipitations. It is noticeable that the meteorological 
variables have an impact further and beyond the impact of the latitude. The latitude, the 
average number of rainy days in May and the minimum temperature in November are the 
main determinants in the presence of Septoria. 
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3.4 Summary of the results for the rest of the diseases models. 
 
Such models have been run independently for the thirty pests and diseases studied. We 
summarise hereafter the quality of the fit reached for each of these models (table4 and 
5). 
 

Table 4. The proportion of the variation explained by the models for different pathogens 

Crop name Name of the disease        R2 
(Train)a 

          R2 
   (Test)b 

Winter Wheat 
 
 
 
 
 
 
 
 
Rapeseed 
 
 
Beetroot 
 
 
 
 
Winter Barley 
 
 
 
Potatoes 

Septoria tritici 
Puccinia triticina 
Puccinia striiformis 
Fusarium graminearum 
Helminthosporium wheat 
Blumeria graminis 
Gaeumannomyces graminis 
Oculimacula spp 
 
Leptosphaeria maculan 
Sclerotinia sclerotiorum 
 
Erysiphe betae 
Uromyces betae 
Cercospora beticola 
Ramularia betae 
 
Rhynchosporium secalis 
Helminthosporium (oat) 
 
 
Phytophthora infestans   
 

58.6 [51.6, 64.4] 
62.6 [50.8, 69] 
59.4 [50.5, 65.6] 
24.8 [11.5,41] 
23.2 [17.6,30.2] 
0 [0, 34.8] 
0 [0, 27.6] 
25.1 [14.6, 33.2] 
 
0 
46 [40.4, 50.5] 
 
0 
87.9 [0, 95.3] 
73.3 [0, 95.6] 
0 
 
55.1 [49.9, 59.7] 
24.9 [13.4, 34.5] 
 
 
86.3[75.8,95 

50.3 [31.2, 64.6] 
52.7[25.4,71.3] 
49.4 [23.2, 69.2] 
14.9[1.4,32.9] 
16 [5.1, 30] 
0 [0, 2.6] 
0 [-1.5, 12] 
17.7 [5, 34] 
 
0 
39.4 [22.5, 53.4] 
 
0 
64.1 [-45.8 ,98] 
0 [-49.1, 91.3] 
0 
 
49 [31.5 , 64.1] 
12.6 [1.1, 28.9] 
 
 
62.5[5.6,90.7] 

a The adjusted R squared for train data given as the median based on repetitions of the 
model, with quantiles of 2.5% to 97.5 % 

 b The adjusted R squared for test data given as the median based on repetitions of the 
model, with quantiles of 2.5% to 97.5 % 
 
  

Table . The proportion of variation explained by the models for different pests. 

 

Crop name Name of the disease               R2    R2 
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      (Train)a     (Test)b  

Winter Wheat 
 
 
 
 
Rapeseed 
 
 
 
 
 
 
 
 
Maize 

Sitodiplosis mosellan 
Deroceras/arion/limax 
Rhopalosiphum padi 
Sitobion avenae 
 
Psylliodes  chrysocephala 
Phyllotreta nemorum 
Ceutorhynchus napi 
Ceutorhynchus picitarsis 
Ceutorhynchus assimilis 
Meligethes aeneus 
Brevicoryne brassicae 
myzus persicae 
 
Ostrinia nubilalis 
 

0 
45.2 [39.7, 51.1] 
32 [18.6, 44.7] 
17.7 [0, 24.7] 
 
66 [61.6, 69.7] 
20.7 [16.8, 26.5] 
45.7 [40.2, 50.4] 
62 [54.6, 70.9] 
23.2 [14.8, 31.9] 
51.6 [47.4, 56] 
19.9 [13.7, 33.7] 
56.9 [49.4, 64.4] 
 
21.4 [0, 49.4] 

0 
35.8 [19.2, 50.1] 
19 [3.8, 38.8] 
11.8 [0, 28] 
 
61.3 [47.2, 72.4] 
17.4 [5.2, 32] 
39.6 [23.7, 56.3] 
50.7 [35.3, 64.1] 
14.1 [2.5, 31.3] 
46 [31.2, 60.6] 
12.7 [1.6, 33.4] 
45.9 [27.3, 63.2] 
 
11.2 [-0.8, 30.8] 

 aThe adjusted R squared for train data given as the median based on repetitions of the 
model, with    quantiles of 2.5% to 97.5 % 
bThe adjusted R squared for test data given as the median based on repetitions of the 
model, with     quantiles of 2.5% to 97.5 % 
 
The majority of the diseases and pest models achieved a reasonable goodness of fit; 
however, for a small quantity of diseases the evaluation of goodness of fit was not 
achieved. The Adjusted R2 varied from 0% in the Leptosphaeria maculan, Erysiphe betae, 
Ramularia betae to 87% in Cercospora beticola of diseases models (table 4). For the pest 
models the values range from 0% in Sitodiplosis mosellan to 66 % in Psylliodes 
chrysocephala model (table 5). In average, we were able to explain 36.8% of diseases 
(pathogens) presence variation and 35.5 % of pest presence variation. Most of the 
adjusted R2 decreased when considering the hold data. This indicates that, there are other 
factors apart from the climate parameters that have an influence on the abundance and 
presence of pest and pathogens of field crops. 
 

3.5 Climatic Parameters 

 
The lasso model was able to extract the explanatory variables from the weather climate 
data. These parameters are provided in the supplementary table 6 for each pest or 
disease. The parameters that are found to be influential for predicting the presence of 
dieases and pests vary among the models. For the pathogens models we were able to 
extract  influential variables for 14 of the 16 pathogens (81%) and 12 pests out of 13, 
(92%). 
 
We summarised the essential parameters by the magnitude of their impact, on the 
presence and abundance of particular pest and pathogen. For the pathogen models the 
following parameters were often: 
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 Maximum temperature in October (Tx= Tmax °C) 
 Minimum temperature in January, March, July 
 Number of days between 0 and 10 °C for April 
 Precipitation in June, December and January 

 
For pest models, the following parameters have a major influence on the presence and 
abundance: 

 Evapotranspiration  in January and March 
 Temperatures between 0 and 10 in February and July 
 Radiation in March, December 
 Minimum temperature in July 
 Maximum temperature in  October, February, August, January 

4. Discussion 

The study highlighted that the climatic parameters have significant effects on the presence 
and abundance of most of the 30 selected pest and pathogens on field crops as 
observedover several years of field observations. These parameters are essential as they 
affect both host crops and pests/pathogens, making the interaction more complex figure 
3 (Olatinwo & Hoogenboom, 2014). An example of such interaction is highlighted by 
Fones & Gurr, (2015), who showed the presence of septoria tritici is well influenced by the 
leaf moisture and consecutive number of rainy days in order to spread throughout the 
hosts crops. Additionally the pathogens/ diseases that affect the aerial parts of the crops 
are a subject of interaction with climatic conditions such as Erysiphe betae (powdery 
mildew) (Kumar, 2016). Temperature is also shown to play a vital role for the stripe rust of 
wheat which is caused by Puccinia striiformis, however canopy temperature has a role in 
stripe rust which indicates the complex interactions of the host crops and its pathogens 
(Cheng et al., 2015). These findings are also in agreement with a study by Chaloner et 
al., (2019) which highlights the role of temperature and rainfall on the initial occurrence 
and development of the pathogens including septoria tritici. This condition shows the 
dependence of the pathogen on complex factors that are not limited to temperature but 
include moisture and light which is linked to the evapotranspiration mechanism (indicated 
by etp in the figure 2). Therefore, our study is part of the several attempts that are being 
applied in order to model and understands the prediction and effects of the weather on 
the presence of pests and pathogens. 
 
 
 
 
 
 
 
 
 
 
 
 

Pest/ Pathogen 
Climate conditions  

Host crops 

Diseases 
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Figure 5. Schematic representation of the relationship between host, climate and pets/pathogens 
(N.Vharddwick, 1998) 
 
Beest et al. (2009) Reported a positive predictive proportion of 0.61 based on the 
relationship between weather and occurrence of Septoria tritici which is in line with our 
predictive proportion of 0.58 – 0.64. This indicates that our model was able to perform 
fairly. However, most of the published models took into account the experimental 
observations under controlled conditions and resistant cultivars e.g. greenhouses, which 
is not the case for our study. This also accounts for a lot of variation within our proportions 
and published proportions.  The typical differences are also highlighted by (Velásquez et 
al., 2018), that the rate of inoculation for rust caused by Puccinia striiformis differed in 
laboratory from in the fields, the controlled temperature of 21 °C at laboratory did not 
cause any infections whereas in the fields the infection occurred even when temperature 
is not constant (18°C - 30°C).   
 
It is shown, in the literature that favorable warm climate or gentle winter conditions that 
supports the occurrence of pests and pathogens are known to expand the utilization of 
synthetic chemicals (Olatinwo & Hoogenboom, 2014). Therefore, the ability to estimate 
future presence based on the trend of climate for particular regions is a crucial activity that 
will give timing and awareness to farmers. 
 
Our study highlights that temperature and rainfall forms part of the most important 
variables that affects crop pests and pathogens interactions. Most of the presence is 
linked with favourable weather conditions/patterns such as a rise in humidity, early or late 
rains (Olatinwo & Hoogenboom, 2014,Skellern et al., 2017, Pandey et al., 2017). The 
influence of temperature and rainfall on the occurrence of pests as well as their population 
with the ability of spreading throughout the crops is summarised, see table 6 (Kumar, 
2016).   

 

Table 5. The influence of several climatic parameters on pests. 

Climatic parameter Influence on pests/ diseases 

Temperature (Tmax & Tmin) Formative rate of pests 

Precipitation (rainfall) Oviposition, adult appearance/emergence, 

Water vapour Egg hatch 

Microclimatic variables such as leaf wetness, 
humidity etc. 

Spread and developmental rate of pests and 
pathogens 

 

4.1 Temperatures 

 
Our regression model was able to select the temperature with its cardinals (minimum and 
maximum) for the majority pests and diseases. It is determined that for Septoria, eyespot, 
Sitobion avenae (grain aphid), Bird cherry-oat aphid, limace (slug), Silver scurf, are some 
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of the diseases that are hugely influenced by temperature, this include the minimum 
temperatures in January, November, September and maximum temperatures in October 
and February.  High temperatures are essential for the rate of inoculum development in 
barely powdery mildew (Kumar, 2016). However, low temperatures can support the 
longevity of certain diseases and spore formation on crops. For example: Phytophthora 
infestans ( Potato late blight) may produce spores at low temperatures, as the optimum 
temperature for germination of potato leaf blight is about 13°C (Kumar, 2016). Winter 
warmth is additionally known to move the phenology of bugs and pathogens resulting in 
colonization of crops and earlier spreading of diseases (Ben-Ari et al., 2018). It is essential 
to mention that a lot of variables in the fall season are important, as they influence the 
occurrence of diseases.  
 

4.1 Precipitation 

 
Precipitation/rainfall (denoted by pr in our lasso model) or determined moisture 
encourages the development and dispersal of contagious diseases among crops in spring 
(Ben-Ari et al., 2018). Our models lead us into a convincible speculation that mild 
autumn/winter favors a development of pathogens and constancy of inoculum (Ben-Ari et 
al., 2018). It is evident that moisture plays a vital role in order for the infection to occur, 
especially for foliar pathogens such as Erysiphe betae (powdery mildew) (Bebber, 2015). 
The wet periods, which are linked to the leaf area by creating a wet surface influences the 
fungal infections, an example, the rust fungus caused by Puccinia striiformis only, need 
the minimum of 5 hours of leaf wetness for infection to happen (Velásquez et al., 2018). 
The duration of leaf wetness that resembles the formation of pathogens is affected by the 
dew accumulation in leaves, that it is longer as a results of dew formation (Rowlandson 
et al., 2015). The pathogen infection rises at maximum temperatures due to the air’s ability 
to hold more water vapor at extreme temperatures (Velásquez et al., 2018). Furthermore, 
the severity of Sclerotina  sclerotiorum increases as the air humidity rises (Velásquez et 
al., 2018). However, the mechanism of such infections depend on the characteristics of 
pests and pathogens as some can form spores at low relative humidity. We therefore, 
highlight that knowledge about the frequent diseases of the common crops mentioned in 
this paper is essential.  
 
Our models also picked up the effect of radiation and evapotranspiration in some of the 
diseases (Rape flea beetle, Rape steem weevil, etc). The evapotranspiration process is 
influenced by radiation, air temperature and humidity (Todorovic, 2005). However, this 
process is associated with abiotic stress factors that have negative impacts on the studied 
crops. Excessive demand of evapotranspiration due to higher temperatures places an 
immense pressure on the crop cells that pave the way for the invasion of pathogens and 
pests hence some of models highlighted this effect. These parameters are more frequent 
and evident although in less magnitude in pests’ models (Brevicoryne brassicae, 
Meligethes aeneus, Ceutorhynchus napi, Psylliodes  chrysocephala). It shows that this 
factors have an influence on the growth and reproduction ability of the pests (their 
population as whole as well as the distribution among field crops), which in turn could 
have negative impacts on the crops. 
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4.2 The effect of the geographical points (latitude and longitude) 

 
Among the models that we fitted, few  reflected the effect of the latitude and longitude of 
the geographical points. Latitude is the most important in Septoria tritici (Septoria leaf 
blotch), Sclerotinia sclerotiorum (white mold), Rhynchosporium secalis (Barely scald), 
Phytophthora infestans (Potato late blight). As mentioned in the results, the increased 
latitude in the Metropolitan of France favors the lower temperatures and higher 
precipitations providing favourable conditions for the mentioned pathogens. This includes 
the distribution of pests among filed crops, it all amounts back to the importance of 
temperature and humidity but might describe permanent patterns over the years leading 
to different average levels of inoculums at the beginning of the crop year in different 
regions. 

4.3 Methodological considerations 

 
Our models did not allow predictions for all of the 30 diseases. None of the variables were 
selected to predict the abundances of Leptosphaeria maculans, Erysiphe betae, 
Ramularia betae and Sitodiplosis mosellan. This does not necessarily imply that the 
weather parameters are not influential  as the number of observations of the variability in 
the observations might not have been enough to fit these models. In particular, It is well 
known that Leptosphaeria maculans has not been a major issue in the studied years due 
to excellent varietal resistances to this disease.  There is evidence in the literature that 
this pests are influenced by the interaction of precipitation and temperature in terms of 
their population and survival rate (Miao et al., 2019). Therefore, our modeling can be 
improved by adding more data in order to capture all of the pests and pathogens, adding 
other places of Europe or more years might solve this issue 
 
Further adaptations are possible by increasing the number of explanatory variables 
(adding for example the wind or the composition of the environnement (Delaune et al., 
2019) or taking into account that some variable might have a non-linear relationship with 
the diseases and pests. For example, the rainfall has a non-linear relationship with the 
occurrence of some pests and pathogens. This means that when precipitation occurs, 
several pathogens may occur, but when precipitation cease then the occurrence of such 
pests may disappear. This phenomenon is highlighted in the study Tydesley et al. (1980) 
that the occurance of Sptoria tritici is hugely influenced by rainfall, which may also 
increase the risk of rust development. It is stated that the less rainfall or minimal irrigation 
may reduce the risk of Septoria tritici. Though that will add the weather variables in our 
models, it is essential to be considered. 
The modelling applied in this study is rather simple than complex. The results and 
methods of this study could be used as a basis to develop the autoregressive models that 
are more complex than the applied general linear modelling for this paper. Importantly, the 
auto-regressive models would allow to partly reflecting epidemiological dynamics between 
points. The other notion is the prediction based on the phenological stages of crops. It is 
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essential as the pests and pathogens attack the crops at different stages therefore, 
knowing which stage is susceptible will be of essence. 

 

 

 

5. Conclusion and perspectives 

 
Our study highlighted that temperature with its cadinals (Tmax and Tmin °C) and rainfall 
are the major determinants of the presence and occurrence of pests and pathogens. The 
interaction of pathogens and hosts crops is complex and essential in understanding the 
abundance of the diseases. The models gave various variations of positive proportions, 
which also highlight that climatic conditions are part of the contributions to crop diseases. 
Therefore, an interaction study of various components such as landscape, climatic 
parameters that play a vital role in the occurrence of diseases will be a step forward. 
Interaction between crop modeling experts, agronomist, farmers and biologist is 
important. 
 
The study had an underlying aim to contribute to the management of diseases in a more 
sustainable way that is to limit the application of pesticides. It is known that at times the 
application of such chemicals are not essential when the diseases are not severe or 
detrimental to crops. Therefore, awareness about such parameters that have high 
magnitude on crops is important. This type of predictions or early warnings of the invasion 
of diseases could serve as an advantage to avoid yield loss.   

6. Supplementary material 

Table 6. Common names of pest and diseases 

Latin Common english name 

Septoria tritici Septoria leaf blotch 

Puccinia triticina Brown rust 

Puccinia striiformis Yellow rust 

Fusarium graminearum Fusarium wilt 

Helminthosporium wheat Silver scurf 

Blumeria graminis Brely powdery mildew 

Gaeumannomyces graminis Take-all 

Oculimacula spp Eyespot 

Leptosphaeria maculans Blackleg disease 

Sclerotinia sclerotiorum White mold 

Erysiphe betae Beet powdery mildew 

Uromyces betae Beet rust 

Cercospora beticola Cercospora leaf spot 

Ramularia betae Ramularia leaf spot 
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Rhynchosporium secalis Barely scald 

Helminthosporium (oat) Silver scurf 

Phytophthora infestans Potato late blight 

Sitodiplosis mosellan Gall midges 

Deroceras/arion/limax Slug 

Rhopalosiphum padi Bird cherry-oat aphid 

Sitobion avenae Aphid 

Psylliodes  chrysocephala Rape flea beetle 

Phyllotreta nemorum Turnip flea beetle 

Ceutorhynchus napi Rape steem weevil 

Ceutorhynchus assimilis Cabbage seed weevil 

Ceutorhynchus picitarsis Rape weevil 

Meligethes aeneus Pollen beetle 

Brevicoryne brassicae Cabbage aphid 

myzus persicae Green peach aphid 

ostrinia nubilalis Corn borer 

 
scleretonia 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Observed ratios of observations 

and predicted ratios 

 

Radiation in march in is major 

determinant 
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