Projet Fil Rouge /
COMPTER, CARTQGRAPHIER KT CARACTERISER
POUR MIEUX PREVENIR LES DEGATS D’OISEAUX

IODAA - AMI2B
INRAE - AgroParisTech

Chaimae EL HOUJJAJI - Donatien LEGE - Anthony MOREAU
- Pauline TURK - Dalyan VENTURA

25 Février 2022



Table des matieres

1

Contexte 3
1.1 Probleme étudié . . . . . . . . e e e e 3
1.2 Objectifs . . . . . . o 3
1.3 Présentation des données . . . . . . L e 3
1.4 DéEfis : . . o o e e 4
Outils et Méthodes 4
2.1 Organisation et répartition du travail . . . . . . . . . . . ... 4
2.2 0Outils . . .o e e e 4
Résultats actuels de la détection d’oiseaux 5
Avancée du projet 7
4.1 Gestion des oiseaux qui bougent légerement ou pas dutout . . . . . .. .. ... 0L 7
4.1.1 Fonction hasFantome . . . . . . . .. . . . . e e 7
4.1.2 Obtention d'imagettes plus completes . . . . . . . . . . . ... 8

4.2 Classification par couleurs . . . . . . . . . . L e 9
4.2.1 Analyse exploratoire . . . . . . . ... e 9
4.2.2 Détection et reconnaissance d’oiseaux . . . . . . .. ..o o e e 11

4.3 Probleme des gouttes . . . . . . . L L e e 13
4.3.1 Solution exploratoire : Variance de Laplacien sur image entiere . . . . . .. .. ... .. ... 14
4.3.2  Solution proposée : Variance de Laplacien sur couronne decnts . . . . . . . .. .. ... ... 14

4.4  Amélioration de la classification par Deep learning déja existante . . . . . . . . . .. ... ... ... 16
4.4.1 Premier entrainement d’un réseau de neurone sur les données existantes . . . . . . . .. ... 16
4.4.2 Entrainement sur des données non pré-traité . . . .. . ... oL oo 17
4.4.3 Intégration des modeles au code existant . . . . . . .. ... Lo Lo 18
4.4.4 Interprétabilité du modele établi . . . . . . . . . ... 18
Bibliographie 19
5.1 Articles . ... e 19
5.2 GitHub . . . e e e e 19
B.3 Start up . . . .o e 19



1 Contexte

1.1 Probléme étudié

TerresInovia est un institut technique agricole assurant des missions de recherche et développement en agriculture,
dirigé par Laurent ROSSO et présidé par Gilles ROBILLARD. Elle est issue d’une fusion entre deux instituts, le
CETIOM (Centre technique interprofessionnel des oléagineux métropolitain) et I'UNIP (Union nationale interpro-
fessionnelle des plantes riches en protéine). Une des problématiques auxquelles sont confrontés les chercheurs est
les dégats causés par les corbeaux sur les semis. En effet, les cultures sont consommeées par les corbeaux lorsqu’elles
sont inférieures a une hauteur critique. De plus, la perte d’argent liée a ce probléme se situe a environ 162 euros
par hectare, et avec pres de 120 000 ha de mais détruits par les oiseaux chaque année, cela revient donc a une perte
de 19 440 000 euros pour le mais uniquement.

Une méthode qui a montré son efficacité est d’utiliser un effaroucheur, un répulsif sonore contre les especes
indésirables d’oiseaux. Il suffit d’activer l'effaroucheur & un intervalle de temps donné (par exemple, les moments
de la journée ou les oiseaux viennent picorer les champs). Mais cela implique deux problémes :
— Les corbeaux s’adaptent facilement aux effaroucheurs et savent quand ils se déclenchent dans la journée, ce
qui implique d’utiliser les effaroucheurs plus souvent
— Les effaroucheurs produisent des nuisances sonores pour le voisinage

1.2 Objectifs

Afin de pallier & ces problémes, une solution de détection d’oiseaux sur des images prises par des capteurs posi-
tionnés dans des champs a été proposée. Les caméras utilisées sont associées a un Raspberry Pi 3 afin de faire tourner
I’algorithme de détection. Si la caméra détecte un oiseau, un systeme effaroucheur associé a la carte Raspberry Pi
3 se déclenche afin de le faire fuir.

Ainsi, Pobjectif de ce projet est de pouvoir mettre en place un outil d’aide & la reconnaissance d’oiseaux sur des
images prises par ces capteurs. Ce travail a déja en parti été réalisé par d’autres stagiaires. Nos objectifs s’inscrivent
donc dans la continuité de leurs travaux.

Missions qui nous ont été confiées :
— Prise en main des codes Python déja réalisés.
— Prise en main de ’outil électronique : connexion au serveur distant et execution des codes.
— Création de nouveaux codes pour obtenir les résultats attendus.
— Améliorer la détection des oiseaux en identifiant les mouvements de téte.
— Changer le traitement de I'image : passer d’un histogramme de couleur RGB au HSV.
— Faire de la prédiction sur les histogrammes de couleur.

Une autre idée a été proposée, celle d’améliorer la détection automatique des oiseaux en changeant la méthode de
Machine Learning utilisée. Pour ce faire, nous avons proposé d’effectuer du co-apprentissage plutot que du clustering
classique qui ne semble pas tres bien fonctionner (1% de vrai positifs obtenus). De plus, cela permettra d’utiliser
des données non annotées pour entrainer et améliorer la détection de corbeaux.

1.3 Présentation des données

Nous disposons dans le cadre de ce projet des images obtenues en sortie du capteur. Les caractéristiques de celles-ci
sont les suivantes :

— Les images sont issues de 20 parcelles.

— Nous disposons d’1 million d’images.

— Parmi ces images, 2600 ont été annotées.



— Ces images annotées ont été segmentées en un total de 6000 imagettes. annotées. (fig 1)

(a) Chevreuil (b) Corneille

FIGURE 1 — Exemple d’imagettes

1.4 Défis :

Plusieurs problemes ont été repérés sur les différentes images récupérées :
— Le changement de luminosité au niveau des images.
— Modification des sols.
— La profondeur de champs qui est variable.
— Un seuil de détection jusqu’a 200 metres.
— Certaines images présentent des gouttes/buée qui genent la prise de vue.
— La plupart des images ne sont pas annotées, ce qui nous fait un faible échantillon d’apprentissage.

2  Outils et Méthodes

2.1 Organisation et répartition du travail

Nous nous sommes répartis en 2 sous-groupes afin de travailler sur un maximum d’objectifs possibles :

— Un sous-groupe, composé de Chaimae, Pauline et Donatien, s’est occupé de la partie ” Analyses d’images”.
Ce sous-groupe a pris en charge 'amélioration du code en implémentant de nouvelles fonctionnalités dans le
traitement des images (Obstruction de la ligne de vue, prédiction sur les histogrammes de couleur, détection
des "fantémes” des oiseaux sur l'image).

— L’autre sous-groupe, composé d’Anthony et Dalyan, s’est occupé de la partie "Réseau de neurones”. Ce
sous-groupe s’est concentré sur I’amélioration de la détection d’oiseaux sur des images non annotées par des
réseaux de neurones.

2.2  Outils

Pour nous permettre d’avoir acces au code ainsi qu’aux différentes images, un acces au serveur ssh distant nous a
été donné, ainsi qu’a un repository BitBucket.

En plus de cela, un environnement virtuel a été créé par notre encadrant, avec plusieurs packages python ins-
tallés dont voici une liste non exhaustive : Scipy, Scikit-image et Scikit-learn, OpenCV, TensorFlow. Pour le co-
apprentissage, nous avons choisit d’utiliser non pas TensorFlow mais PyTorch.

Le langage de programmation R est aussi utilisé lors de I'analyse des images dans le prétraitement.



3 Résultats actuels de la détection d’oiseaux

Ce projet de détection des oiseaux ravageurs des cultures agricoles est mené a 'INRAE depuis 3 ans. Notre
premier objectif a donc été de prendre en main les codes Python déja mis en place que nous allons brievement
résumer et exposer dans cette partie et montrer les résultats déja obtenus.

Actuellement, le sytéme mis en place prend en entrée deux images successives qu’il analyse ensuite.
La premiere étape de ’analyse vise a distinguer les élements caractéristiques comme les oiseaux, chevreuils, ... Elle
comporte les étapes suivantes :
— diff = CumulCanalDiff (imageB,imageA)
Fait un cumul des différences sur les 3 canaux de deux images pour éviter les compensations de passage
bleu-rouge pas exemple.
— threshInit = GausThresh(diff,threshMultFull)
Extrait la gaussienne ajustée a I’histogramme de la différence entre 2 images afin d’identifier les Pixels dont la
valeur est complétement improbable avec un seuil tres bas de threshMultFull. Ainsi ces Pixels correspondent
trés probablement a un objet détecté.
— thresh2=MajorityOnNeigh(threshInit,5)
Seuille sur la moyenne des pixels voisins
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FIGURE 2 — Résultat de la visualisation des étapes d’analyse des images

La suite de I'analyse consiste en la récupération des contours des éléments identifiés dans la variable cnts a l'aide
de la bibliotheque cv2, puis on trace sur I'image les élements identifiés. :
— initDiff=WriteNumCnts (DrawContextFromCnts (imageB,cnts) ,cnts)
Permet de tracer les contours identifiés sur I'imageB ainsi que leur numéro d’index. Or on remarque que
parmi les 9 élements identifiés, il y en a des évidents a enlever. Cette analyse a été effectuée pour a terme ne
sélectionner que les 2 imagettes correspondant aux 2 pigeons réellement présents sur I'imageB.
— finale = DrawContextFromCnts(imageB,cntsNext)

Enfin, dans une derniére partie, on récupere les données qui nous interessent sur les zones identifiées et on essaie de
déterminer leurs classes (oiseau,pigeon, ...) :
— XYmmTable = XYMinMax(cnts)
Pour récupérer les sommets des carrés des imagettes
— tableau2 = predict_ResNet(pathImagettes, classes, ctx, transform test,label desc,
finetune net, imageB, nameB, cnts)
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FIGURE 3 — Résultat de la visualisation des étapes de détection de contours.

Cette fonction permet de prédire la classe des imagettes en associant des probabilités a chacune des classes
("autre’, 'cheval’, 'chevreuil’, ’corneille’; 'dirt’, 'faisan’, ’ground’; ’lapin’, 'pigeon’, ’tracteur’, 'voiture’).
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FIGURE 4 — Visualisation de certaines données associés aux imagettes.

Plusieurs modeles de réseau de neurones ont déja été entrainé pour la détection sur les images en fonction de
divers classes : (chevreuil, corneille, faisan, lapin, pigeon, ...). Le probléeme actuel avec les modeles utilisés était
systématiquement le sur-apprentissage.



4 Avancée du projet

Une fois les analyses précédentes bien maitrisées et les outils bien appréhendés, nous avons pu nous lancer
dans les deux grandes thématiques évoquées. D’une part, continuer I’analyse statistique et d’autre part mettre en
place des techniques d’entrainement de réseaux de neurones avec des problématiques de Data Augmentation et de
Co-apprentissage.

4.1 Gestion des oiseaux qui bougent légérement ou pas du tout

Suite au premier jeu d’analyse afin de détecter des oiseaux, un constat a été réalisé : une signature de la
présence d’oiseaux sur une image était qu’a l'instant d’apres il s’était déplacé. Cela a abouti a la détection basée sur
la différence de deux images successives. Or un probléme survient lorsque I'oiseau bouge peu ou ne bouge pas du
tout ce qui arrive sur certaines images. Dans ce cas-ci I'imagette détectée est tronquée ou inexistante. Pour résoudre
ce probleme nous avons d’abord mis en place une fonction hasFantome qui permet de référencer dans chaque image
quelle oiseau est considéré comme un fantome d’un autre oiseau a un instant précédent. Cela signifie que I'oiseau a
peu bougé d’une image a l'autre. Ensuite dans un second temps, nous avons voulu régler ce probleme d’imagettes
tronquées lorsque 'oiseau bouge une ou plusieurs parties de son corps (bec, queue, téte, ...).

4.1.1 Fonction hasFantome

hasFantome est une fonction qui prend en entrée deux tableaux qui contiennent les informations des imagettes
contenant des oiseaux pour des images successives & un instant t et & instant t+1 (aire, perimetre, nom, ...). Son
objectif est de pouvoir déterminer si une imagette d’un oiseau a un instant t+1 correspond a une imagette d’un
oiseau a un instant t. Pour cela on calcul un taux de recouvrement entre les imagettes et si celui-ci est supérieur a
0% alors cela signifie que I'imagette B est un fantome de 'imagette A. On peut retrouver sur le github un lien vers
cette fonction hasFantome.py.

On obtient en sortie de cette fonction, un tableau qui indique, le chemin et les noms des images considérées a
Iinstant t et a l'instant t+1, I'index de I'imagette a l'instant t ainsi que 'index de I'imagette a l'instant t+1, la
surperficie de recouvrement (en pixel) ainsi que le taux de recouvrement de A et le taux de recouvrement de B.

Sur la Figure 5, on donne un exemple de sortie de cette fonction sur deux images successives présentées en Figure
6 . On peut lire d’apres le tableau que 'imagette 1 a I'instant t+1 est un fantome de I'imagette 0 a I'instant t. En
d’autres termes, I'oiseau a légerement bougé entre I'image & 'instant t et a I'instant t+1 mais pas suffisament pour
que laire de recouvrement soit nulle. De méme les imagettes 0 et 2 a I'instant t+1 sont des fantdmes de 'imagette
1 a l'instant t.

Limites, améliorations et continuations

Cette fonction nécessite des ajustements dans le cas ou les tableaux qu’elle prend en entrée contiendraient des
valeurs manquantes 'NaN’.

Path indexA nameA indexB namefB AreaQverLap RecouvrementA RecouyrementB verdict
0/work/c3po_all/c3po_interface_chaimae/images_tests/ Oimage_2021-04-10_07-04-59.JPG 1image_2021-04-10_07-05-31.JPG 912 1 0.206101694915254 True
1/work/c3po_all/c3po_interface_chaimae/images_tests/ 1limage_2021-04-10_07-04-59.JPG 0image_2021-04-10_07-05-31.JPG 504 0.75 0.508064516129032 True
2|/work/c3po_all/c3po_interface_chaimael/images_tests/ limage_2021-04-10_07-04-59.JPG 2image_2021-04-10_07-05-31.JPG 380 0.56547619047619 0.451843043995244 True

FIGURE 5 — Tableau de correspondance obtenu en sortie de hasFantome


https://github.com/PaulineTurk/Projet_Fil_Rouge/tree/main/hasFantome
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FIGURE 6 — Deux images d’oiseaux successives avec les contours détectés.

4.1.2 Obtention d’imagettes plus complétes

Une des limites majeure des analyses qui avaient été mises en place concerne la détection des imagettes qui sont
souvent incompléetes et tronquées. Des exemples sont fournis sur la Figure 7.

a) Imagette 1 b) Imagette 2 c¢) Imagette 3

FIGURE 7 — Exemple d’imagettes tronquées.

Afin de palier a ce probleme il a donc été décidé I'ajout d’une étape a l'analyse. Une fois que la soustraction
entre deux images a été réalisée, un oiseau qui bouge que la téte et que la queue mais pas le corps sera identifié
avec deux imagettes car le contour se fera sur les parties qui ont bougé. Ainsi pour prendre en compte également le
corps de l'oiseau (qui lui ne bouge pas), une approche visant & sommer la soustraction des deux images ainsi que la
soustraction finale a I'issu de 1’étape précédente est mise en place. Une figure récapitulative est fournie en Figure
8. Ainsi cette technique implémentée a permis d’améliorer la détection de certains oiseaux sur des images comme
illustré sur la Figure 9

Limites et continuations

Cette approche s’avere étre tres utile pour les premieres images mais lorsque un élément autre qu'un oiseau est
détecté, elle révele des failles. Des améliorations sont a apporter dans le futur.
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FIGURE 8 — Amélioration de la détection des oiseaux
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FIGURE 9 — Résultats

4.2 Classification par couleurs

Le réseau de neurones de la fonction Res_predict ne présentant pas des performances satisfaisantes quant a
la reconnaissance des objets sur les imagettes, notamment du fait des variations de netteté et de taille, 'objectif
est de trouver des critéres plus simples et plus controlés, en particulier statistiques, pour compléter ’analyse. En
particulier, on cherche a exploiter les histogrammes de couleur pour la reconnaissance d’oiseaux (un pigeon est
plus gris qu'une corneille par exemple). Les essais ont été menés en deux temps : en premier lieu, dans un but
exploratoire, seuls les histogrammes d’intensité sont exploités a des fins de classification de type un contre tous,sur
certaines classes tres représentées telles que ’corneilles’, ’autre’ et 'ground’. Des modeles de PLS-DA et de foréts
aléatoires sont testés. Dans un second temps, dans un soucis de complémentarité avec la reconnaissance d’oiseaux
par le nouveau réseau de neurones implémenté au cours du projet, seule la détection d’oiseaux et la différenciation
de corneilles/pigeons par forét aléatoire sont recherchées.

4.2.1 Analyse exploratoire

Pour cette premiere analyse, un jeu de données de 1488 imagettes, dont 432 sont labellisées corneilles. Aucune
imagette n’est labellisée pigeon.



PLS-DA  (Partial Least Squares - Discriminant Analysis).

La régression PLS peut étre utilisée a des fins de classification. C’est un outil classique d’analyse spectrale
(Ballabio et Consonni, 2013). Pour cela, le vecteur Y des variables quantitatives & expliquer est remplacé par un
vecteur de variables indicatrices.On obtient pour chaque individu un résultat de régression compris entre 0 et 1.
Arbitrairement, un seuil de 0.5 est appliqué pour 'attribuer, mais celui-ci peut étre optimisé en approximant les
distribution des classes par des gaussiennes et en appliquant un théoreme de Bayes pour calculer une probabilité
d’appartenance a posteriori. Dans le cas de plusieurs classes, le vecteur indicateur Y est remplacé par une matrice
indicatrice constituée d’une colonne par classe. De la méme maniére qu’une régression PLS quantitative, les zones
du spectre étudié ainsi que le nombre de variables latentes sont des parametres a optimiser.

Apres implémentation, une premier test est effectué sur 20 imagettes d’'un méme champ, sur lequel des personnes
apparaissent ou non. Une projection des nouvelles variables sur les deux premiers axes permet de visualiser une
séparation relativement nette a l'oeil nu (fig (3)). Deux prétraitements sont appliqués : une normalisation par la
somme des intensités pour prendre en compte les différences de luminosité au cours de la journée, ainsi qu’une
transformée logarithme afin de faire ressortir l'information contenue dans les composantes de faible intensité.

La régression PLS-DA sur un jeu complet d’imagettes annotées ne se révele par la suite d’aucune utilité : les
projections des individus des deux classes sont complétement superposées, et les estimations de classe par la PLS
sont donc concentrées sur des valeurs proches de 0.5, rendant délicat 'utilisation d’un seuil. De maniere générale,
cette méthode semble trop complexe par rapport a I'interprétabilité recherchée.

PLS cross-decomposition

Latent Varia
(]

® ground °
@® notground

Latent Variable 1

FIGURE 10 — projection préalable de 20 individus sur le deux premieres variables latentes -
Classe ”ground” contre le reste
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Essais de foréts aléatoires. Les foréts aléatoires consistent a classifier les échantillons a I’aide d’un vote majori-
taire de différents arbres simples de décision, construits sur un nombre limités de variables et a partir d’échantillons
tirés aléatoirement, de maniere & limiter leur dépendance mutuelle. Cette technique présente I'avantage d’utiliser
des criteres de décision simple, tout en étant plus robuste au surapprentissage que la PLS-DA. Dans le cas présent, le
systeme d’apprentissage est constitué de 100 arbres, et les performances de classification un contre tous sont établies
suite & une validation croisée & 50 plis, avec k= 30% des échantillons utilisés en apprentissage. Les données, comme
précédemment, ont subi deux prétraitements : une normalisation par la somme des intensités et une transformée
logarithmique. Pour les classes ground, autre+humain et corneille, suffisamment représentées dans le jeu de données
(au moins 100 parmi les 1488 individus), on obtient les précisions moyennes suivantes :

classe ground | autred+humain | corneille
précision 0.50 0.78 0.67

Les simples histogrammes d’intensité ne permettent donc pas d’identifier de fagon fiable les formes présentes
sur les imagettes. Cependant, les foréts aléatoires proposant des performances meilleures que le hasard, ces essais
prouvent qu’il y a effectivement de l'information a exploiter dans les histogrammes de couleur.

4.2.2 Détection et reconnaissance d’oiseaux

Pour cette section, 827 images supplémentaire de pigeons sont ajoutées au jeu de données. Les histogrammes
d’intensité s’étant révélés inefficaces pour des fins de classification, les images sont converties au format HSV afin
d’obtenir des histogrammes de teinte sur les 360° du cercle chromatique encodés dans le canal H. De plus, une
détection de contours est effectuée avec un filtre d’OTSU. Ces deux traitements permettent de limiter a la fois les
biais liés a la couleur du sol et a 'exposition. Il est cette fois décidé de ne classifier les images qu’au moyen de
foréts aléatoires, cette méthode ayant donné de meilleurs résultats au cours de ’analyse d’exploratoire. Il s’agit
maintenant d’optimiser trois parametres : la résolution des histogrammes, le nombre de classifieurs et la section du
cercle chromatique exploitée.

Obtention des histogrammes de teinte L’image convertie au format hsv, un filtre d’Otsu est appliqué sur le
canal H de maniere & ne considérer que les pixels présents a l'intérieur des formes se détachant de l'arriere-plan,
comme dans I’exemple figure 11. Un histogramme du canal H est ensuite réalisé. Celui-ci contient les quantités de

© LPO-IDF|

(a) photo originale (b) filtre d’Otsu

FIGURE 11 — Application du filtre de contour sur une photo de corneille. Seuls les pixels blancs sont considérés par la suite.

pixels dont la teinte h correspond a chacun des 360° du cercle chromatique. Comme pour I’analyse exploratoire, une
normalisation par la somme du nombre de pixel est effectuée afin de compenser les différences possibles de taille
entre les imagettes.
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Optimisation des parametres de la forét aléatoire. Le principal intérét de ’analyse d’histogrammes est
de pouvoir classifier les différentes imagettes avec un cout calculatoire faible, en limitant le surapprentissage. Il
est donc pertinent de limiter & la fois 'information en entrée du systeéme, ainsi que ses dimensions. Pour faciliter
I'implémentation, les mémes parametres du modele seront appliqués pour la détection et la reconnaissance. Les
résultats présentés par la suite sont ceux ayant permis la prise de décision, et peuvent donc porter donc sur I’étude
de I'une ou 'autre des deux taches.

Une premiere stratégie consiste a réduire la résolution des histogrammes en remplacant chaque groupe de 2 ou
3 bins par leur moyenne respective. Le tableau 4.2.2 présente la précision moyenne des classifieurs (corneille ou
pigeon)/(autre) suite & une validation croisée & 10 plis, associée 1’écart type correspondant :

résolution (bins) 120 180 360
précision 742+ 0.1 | 745+ 0.1 | 75.2 £ 0.1

La perte de précision étant jugée trop importante par rapport a la faible compression proposée, il est plutot
proposé de ne sélectionner qu’une certaine fraction du cercle chromatique de résolution maximale. Pour estimer
l'utilité de l'information discriminante portée par chaque section, la précision d’un classifieur corneille/pigeon est
évaluée a l'aide d’une validation croisée a 10 plis effectuée pour chaque segment de 10° (figure 12(a)). La majorité
de I'information utile étant regroupée sur la premiere moitié du cercle, le méme protocole est appliqué pour une
forét aléatoire recevant un segment [0,n] du cercle, pour n allant de 10 & 300° (figure 12(b)).

0.95 1
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0.90 4
0.70 0.85 4
0.80 4
0.68
0.754
0.66 0.70 4
0.65 4
0.64 T
o 50 100 150 200 250 300 o 50 100 150 200 250 300
(a) Précision moyenne du classifieur pigeon/corneille par (b) Précision moyenne du classifieur pigeon/corneille par
segment de 10° taille du segment (°)

FIGURE 12 — Sélection de la zone d’information utile du cercle chromatique

La précision du classifieur pigeon/corneille se stabilisant a partir de 180°, il est décidé de ne considérer que la
section [0,200°] par la suite. La réduction de dimensionnalité est modérée, mais ne réduit pas la précision des foréts
aléatoires et contribue a conserver des modeles les plus parcimonieux possible.

Enfin, il convient de choisir un nombre minimal de classifieurs au sein des modeles. Pour ce faire, la précision
moyenne d’une classification (pigeon ou corneille) /autre est estimée sur une validation croisée & 10 plis, avec en
entrée la section [0,200°] du cercle chromatique (figure 13).

Le compromis entre la complexité des calculs et la précision de la classification optimale est jugé optimal pour
40 classifieurs. Les modeles sont finalement implémentés avec 40 classifieurs, et regoivent le segment [0, 200°] du
cercle chromatique. Les précisions finales des modeles retenues sont les suivantes :

tache Détection d’oiseaux | Identification corneille/pigeon
précision 75.27% 95.27 %
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FIGURE 13 — Précision moyenne en fonction du nombre de classifieurs

Du fait de sa simplicité et de sa bonne performances sur l'identification d’oiseaux, la classification par histo-
gramme de couleur agit en complément du réseau de neurones implémenté au cours du projet. L’utilisation des
histogrammes de couleurs ne semble cependant pas satisfaisante pour des fins de détection, d’autant plus qu’une
comparaison avec un classifieur plus complexe sur les mémes données prétraitées (Boosting implémenté avec 1’algo-
rithme AdaBoost sur 100 arbres de décision de profondeur 3 et un taux d’apprentissage de 0.5) donne lieu & une
précision comparable (75,2%). Cela laisse supposer que toute I'information utile & la classification est captée par des
foréts aléatoires relativement simples. Si 'identification présente a contrario des résultats impressionnants, il est a
noter qu’un biais d’environnement est envisageable, dans la mesure ou toutes les images du jeu d’entrainement ont
été acquises sur deux jours et dans le méme champ.

4.3 Probleme des gouttes

Probléme et objectif. Des gouttes (pluie, buée, rosée) peuvent se former sur la lentille des caméras ce qui peut
altérer la définition des contrastes d’une image et potentiellement la détection d’oiseaux. L’objectif est alors de
pouvoir identifier ces images.
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4.3.1 Solution exploratoire : Variance de Laplacien sur image entiere

Intuitivement, on peut s’attendre a ce que des gouttes qui se forment sur 1'objectif de la caméra induisent une
baisse de netteté des constrasts des objets détectés.
Cela peut étre quantifié par I'opérateur convolutif dit du Laplacien' disponible dans la bibliotheque Python
OpenCV.

Test préliminaire et résultats. Le Laplacien a été appliqué aux images prises le 01/05/2021 avec le kernel par
défaut en 3x3. Ce test préliminaire & mis en évidence les points suivants :
— Le calcul de Laplacien sur une image entiere ce fait en temps raisonnable, de ’ordre de 0.3s/image.
— Le calcul de variance semble plus explicatif que celui de la moyenne.
— La variance de Laplacien sur image entiere est principalement influencée par la luminosité. L’apparition de
gouttes, d’animaux ou d’objets a un impact relativement minime sur cette variance.

Conclusion et Redéfinition de I’objectif. Ainsi pour la suite, il a été décidé de ne travailler qu’avec la variance
de Laplacien et de restreindre ce calcul & des zones bien définies beaucoup plus petites que I'image entiere.

4.3.2 Solution proposée : Variance de Laplacien sur couronne de cnts

Une méthode plus fine pour quantifier cette variation de Laplacien entre deux images successvies a été mise
en place functions_analysis_add_pauline.py, BoucleResNet_Pauline_cnts.py. Elle se base sur la restriction des zones
d’intéret aux couronnes des cnts. ThreshNext donnée par le systeme expert déja mis en place est une image binarisée
contenant les cnts identifiés comme pertients. Les couronnes ont été obtenues en prenant la différences de I'image
de ThreshNext dilatée n fois par 'image de ThreshNext érodée n fois (fig 14).

threshMext Masque avec couronnes
{zoom) (zoom)

FIGURE 14 — Obtention du masque contenant les couronnes des cnts par soustraction de threshNext dilatée 2 fois
avec threshNext érodée 2 fois

L’intéret de travailler sur des couronnes de cnts et non sur les cnts directement permet de pallier des cas ol
I’intérieur d’un oiseau est plus homogene que le sol sur lequel il se pose, impliquant que I'arrivée d’un oiseau diminue
le laplacien au lieu de ’augmenter comme attendu.

La méthode proposée comprend les étapes suivantes (fig 15) :

— Etape 1 : Calculer le Laplacien de chaque image successives A et B

— Etape 2 : A partir de ThreshNext, calculer le masque contenant la couronne de chaque cnts

— Etape 3 : A partir de ce masque, obtenir pour chaque cnts un sous-masque de la meme taille ne contenant
que la couronne du cnts associé. Puis appliquer ce sous-masque & chaque Laplacien des images A et B. Enfin
calculer pour chacune des images obtenues la variance sur ’ensemble des pixels dont la valeur est non nulle
i.e ceux appartenant a la couronne.

1. https://docs.opencv.org/3.4/d5/db5/tutorial_laplace_operator.html
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https://github.com/PaulineTurk/Projet_Fil_Rouge/blob/main/Goutte_LowContrast/functions_analysis_add_pauline.py
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https://docs.opencv.org/3.4/d5/db5/tutorial_laplace_operator.html

— Etape 4 : Pour chaque cnts, calculer le rapport de la variance de Laplacien de B sur celle de A. On s’attend
a ce que ce rapport soit inférieur & 1 dans le cas d’objets qui sortent de la couronnes ou de formation de
gouttes et une valeur supérieure a 1, on s’attend au contraire, a ’apparition d’objets dans la couronne.

1- Calcul de 2- Calcul du masque des 3- Pour chaque 4- Calcul du
Laplacien couronnes des cnts couronne de cnts, rapport R de ces
ThreshNext dilaté n fois calcul de var Laplacien  var Laplacien (B/A)

- ThreshNext érodé n fois

Interprétations
ﬁ attendues
g
£ si R <1 : formation
= “|magetle “imagette A.1" d’une goutte ou
A" xmasquet ___, sortie d'un objet de

la couronne

si R > 1 : apparition
d’'un objet dans la
couronne

|magette “imagette B.1”
B.17 X masque 1

Image B

FIGURE 15 — Etapes de la méthode de calcul de variance de Laplacien dans la couronne de cnts sur deux images
successives A et B (le 1 & I’étape 3 est relatif au cnts 1)

Résultats et discussion. Afin d’évaluer la méthode, elle a été appliquée a plusieurs couples d’images successives.
La figure 16 résume les principaux résultats observés :

— Cas 1 : Le R-Laplacien est supérieur a 1. On s’attend a ce qu’un objet soit arrivé dans la couronne au
passage de 'image A & B.

Remarque : il ne s’agit pas tout le temps d’oiseaux, des cas de voitures refletant la lumiere du soleil on pu
etre observés avec un R-Laplacien de 10. Mais dans cette situation, s’il s’agit d’oiseaux qui apparaissent, la
couronne associée dessine bien les contours de l’animal.

— Cas 2 : Le R-Laplacien est inférieur a 1. On s’attend a ce qu'un objet sorte de la couronne au passage de
I'image A a B ou que cette baisse de variance de Laplacien soit liée a la formation d’une goutte. Toutefois,
les R-laplacien ne permettent pas de distinguer ses deux cas. Notons tout de méme que suite a la formation
d’une goutte, beaucoup de cnts sont sous le critere de taille minimale imposée par le systéeme expert et donc
ne sont pas retenus pour la suite de I'analyse. Cette information pourrait aussi etre exploitée conjointement
a ce R-Laplacien inférieur & 1 pour caractériser assez probablement la formation d’une goutte.

— Cas 3 : Le R-Laplacien est proche de 1 (seuil a définir). Ce cas n’avait pas été anticipé lors de I’élaboration
de la méthode décrite dans cette section. Mais il est tres intéressant. Ce cas met en évidence un objet qui
a peu bougé entre A et B. On voit d’ailleurs que la couronne obtenue semble composite, témoignant de
mouvements résiduels.

Conclusion. Ainsi le travail effectué sur le probleme de la goutte a dérivé apres discussion et reflexion vers une
problématique plus large. Le travail exploratoire sur les couronnes des cnts a permis de mettre en évidence la
possibilité de gain d’informations quand au mouvement d’objets. Cependant, les observations faites doivent etre
prises avec précaution et ne doivent pas étre généralisées a ce stade. Il conviendrait notamment de tester différentes
combinaisons des parametres comme le kernel utilisé pour le Laplacien ou encore le nombre de dilations/érosions
choisi. Aussi un travail de recherche de seuil devrait étre réalisé. Une derniére remarque repose sur la grande
dépendance de ce travail a la qualité des cnts générés par le systéme expert.
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Cas Image A Image B R-Laplacien Interprétation
(B/A)
1 1 2.79
R>1
1.45
— Arrivée d’un objet

R<1

0.52 — formation d’une
goutte
ou sortie d’un objet

h

2 |3
3 |3 2.77 R~1

0.90 — L'objet a fait du sur
place

02 F'—‘
-
&

FIGURE 16 — Cas illustrant la majorités des résultats observés par application de la méthode (les valeurs indiquées
en haut & gauche de chaque photo est la valeur de la variance de Laplacien dans le couronne. R-Laplacien(B/A) est
le rapport de la variance de Laplacien de B sur A. Les termes "arrivée” et "sortie” dans la derniére colonne sont
relatif & la couronne).

4.4 Amélioration de la classification par Deep learning déja existante
4.4.1 Premier entrainement d’un réseau de neurone sur les données existantes

Pour ce premiére entrainement nous avons décidé d’éviter d’étre trop ambitieux. Dans 1’idéal, le projet C3P0
voudrait créer a terme un systeme de détection et de classification des oiseaux. Le systeme devrait donc étre en
mesure non seulement de dire s’il y a un oiseau ou pas sur une prise de vue mais également de classifier 1’oiseau
dans les différentes especes classiques qu’on retrouve dans les champs (pigeon, corneille, faisan...). Cependant au vu
du relatif faible nombre de données annotées il a été décidé de commencer par entrainer un systéme capable simple-
ment de dire si une image contient un oiseau ou pas. De plus I'architecture choisie est une architecture ResNet18,
la plus petite des architectures ResNet. Elle a été sélectionné car plus 'architecture est grande et plus il faut de
données pour I'entrainer. De plus contrairement a une base de données comme ImageNet qui compte 1000 classes
a distinguer, le probleme ici est une classification binaire donc on peut supposer qu’il est plus simple.

De la data augmentation a également été appliquée aux données. Cette pratique qui a la base permettait un
meilleur apprentissage sur des petits jeux de données est désormais utlisée quelle que soit la taille du jeu de données.
En effet, en forcant le réseau de neurone a étre invariant a un certain nombre de petits changements, on le force a
mieux isoler le concept cible ce qui permet une meilleure généralisation. De plus au vue des capacité d’adaptation
énorme de ces systemes, les nouvelles images générées agissent comme de nouveaux exemples. Pour ce premiere
entrainement, des variation aléatoires d’angle, de translation et de taille ont été appliquées aux exemples.

Comme D'objectif était de faire une classification binaire entre les images d’oiseaux et les images contenant
autre choses que des oiseaux, cela implique de ranger les différentes annotations sur les images dans ces deux
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catégories. Pendant cette phase il s’est avéré qu'une des catégorie nommée incertain contenait des images contenant
probablement des oiseaux et d’autre contenant certainement des objets qui n’étaient pas des oiseaux. Comme il
était impossible de ranger cette catégorie selon si elle contenant des oiseaux ou pas, il a été décidé d’exclure cette
catégorie des données d’entrainement.

Une fois cette travaille de réflexion en amont achevé, I’entrainement a été implémenté en python en utilisant le
bibliotheque PyTorch et 'optimiseur Adam pour la descente de gradient. 90% des données ont été utilisées pour
Pentrainement et 10% pour tester les performances du réseau de neurones. A l'issue de entrainement, le réseau de
neurone avait un taux d’erreur de l'ordre de 4 & 5% en considérant que le jeu de donné global est composé & 37%
d’images d’oiseaux et & 63% d’images n’étant pas des oiseaux. Ce premier résultat sans optimisation particuliere
de loptimiseur ou de l'architecture est donc encourageant et laisse penser que la reconnaissance des oiseaux par un
réseau de neurone peut fonctionner.

Dans un second temps, du transfert learning a été effectué en utilisant les premieres couches d’'un ResNet18 pré-
entrainé sur la base de données ImageNet. L’apprentissage par transfert est populaire car il permet généralement
d’obtenir de meilleur performances. Dans le cas actuel, cette méthode permet d’améliorer les performance en ayant
un taux d’erreur de l'ordre de 3 & 4% et augmente la vitesse de convergence car il faut moins d’epoch pour que le
modele atteigne sont taux d’erreur maximal.

4.4.2 Entrainement sur des données non pré-traité

Les données existantes n’ont pas été directement découpées a partir des images sources, un prétraitement a été
réalisé. Pour extraire de la photo la zone annotée, son centre et sa longueur la plus grande sont déterminée puis
un carré de coté 1.2 fois la largeur centrée sur le centre de la zone est découpé. Cette zone découpé est ensuite
redimensionnée en 96 par 96 pour fabriquer les images d’entrainement.

Cette procédure est cohérente avec le but de I'entrainement du réseau de neurone : prendre en entrée les zones
contenant potentiellement un oiseau déterminées par la phase de prétraitement qui auront été découpées de I'image
prise par la caméra selon une logique similaire. Cependant, il serait intéressant de mesurer les performances d’un
réseau de neurones entrainé sur des images en taille réel pour voir a quel point le réseau de neurone arrive a
reconnaitre les oiseaux sans prétraitement. Si le réseau de neurone fonctionne bien il serait peut étre possible
d’améliorer le réseau de neurone pour qu’il soit capable d’effectuer la reconnaissance sans prétraitement.

Pour ce faire, les zones annotées dans les images sources ont été redécoupées pour extraire des carrés de 96 par
96 sans redimensionnement. Cependant, les échantillons annotés comme sol ont été découpés trop pres des oiseaux,
des oiseaux se retrouvaient donc inclus dans les images annotées comme ne contenant pas d’oiseaux. La solution
a ce probleme a consisté a découpé de maniere aléatoire des images ne contenant pas d’oiseaux dans 'image en
considérant que si on découpe une zone de I'image qui n’a pas de recoupement avec les zones annotées alors on
obtient une image ne contenant pas d’oiseau.

Pour ce faire, une classe python a été implémentée qui permet sur la base d’une image de tirer des zones
aléatoires ou spécifique de I'image de maniere a ce que tous les tirages aléatoires suivant ne contiennent pas de zone
de I'image déja tiré. L’implémentation est loin d’étre évidente car on veut une structure de donnée qui permette
a la fois de tirer rapidement et aléatoirement une partie de I'image et de supprimer facilement les zones qui ne
peuvent plus étre tirées. Une liste permet de facilement tirer aléatoirement un élément mais pas de tester ’existence
et de supprimer un élément dont on ne connait pas forcément la position dans la liste. Un dictionnaire permet de
facilement tester I'existence d’un élément et de le supprimer mais ne permet pas de tirage aléatoire rapide. Au final,
I’optimisation ne posant pas trop de probleme, 'implémentation a été faite en utilisant un dictionnaire qui stocke
les coordonnées de tous les centres d’images valides dans les clés. Lorsqu'une image est tirée, tous les centres trop
proches sont supprimés du dictionnaire. Pour le tirage aléatoire cela implique de créer une liste des clés ce qui n’est
pas une solution tres efficace d’un point de vue algorithmique. Pour avoir une solution efficace, il faudrait créer une
structure de donnée qui combine les deux propriétés.

Une fois les nouvelles images générées un ResNetl8 a été entrainé sur les nouvelles données, Le model atteint
5% de taux d’erreur ce qui est moins bon que dans le cas précédent mais reste quand méme largement au dessus
du hasard.
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4.4.3 Intégration des modeles au code existant

Le but original de I’entrainement des réseaux de neurones était de pouvoir les faire tourner dans le script princi-
pale, boucle_resnet.py. Cependant, il n’y avait rien de spécifique prévu pour 'intégration de nouveaux modeles, les
deux modeles précédents ayant été directement insérés dans le code principal. Pour pouvoir insérer nos modeles plus
facilement et pour intégrer plus facilement de futurs modeles, il a été décidé de créer une bibliotheque python pour
contenir les modeéles. La bibliotheque contient chaque modele dans un fichier python séparés. Le fichier __init__.py
centralise tous les modeles implémentés et propose une fonction avec une syntaxe uniforme pour les modeles. Cela
permet d’éviter au maximum de modifier le code principal lors de l'intégration de nouveau modeles et de bien
séparer les codes nécessaires au chargement des différents modeles pour plus de lisibilités du code principal ainsi
que du code des modeles.

4.4.4 Interprétabilité du modele établi

Mais méme avec un modele performant, on en vient toujours a se demander si celui-ci est interprétable. On sait
que les modeles d’'TA, plus précisément les modeles de Deep Learning comme ResNet18, sont souvent assimilés a ce
qu’on appelle des ”boites noires” da a leur fonctionnement opaque, cachés parmi les différentes couches de neurones
du modele, et qui n’est pas forcément compréhensible par les scientifiques. La complexité des modeles est une force,
mais aussi une faiblesse puisque cela les rend peu interprétables.

Pour palier a ga, différentes méthodes permettent de déterminer 'interprétabilité d’une IA, pour rendre le fonction-
nement du modele et ses résultats davantage transparent et compréhensible pour les différents acteurs. Celle que
nous avons utilisé est la méthode Grad-CAM.

Comme le modele utilisé est un modele convolutif, le Grad-CAM est une des méthode spécifiques a ce type de
modele pour déterminer 'interprétabilité de notre modele. Cela consiste a retrouver quelles parties de I'image ont
conduit le réseau a sa décision finale. On reproduit donc les cartes thermiques, représentant les classes d’activations
sur les images recues en input. Ici, les deux classes d’activation sont ”Oiseau” et ”Non Oiseau”. Les pixels vont étre
colorés en rouge ou bleu en fonction de I'importance de chaque pixel par rapport a la classe concernée.

Prenons les six images qui nous ont servi & tester notre modele et appliquons la méthode Grad-CAM. (Fig. 17)

Premiérement on voit que pour la classe 1 : "Non oiseau”, toute 'image est coloré en bleu. Cela veut dire que toute
I'image n’est pas importante pour le modele, donc aucun des pixels n’a été gardé.

Par contre, pour les images de la classe 0 : ”Oiseau”, les pixels colorés sont ceux sur lequel on peut observer un
oiseau. Ainsi, les pixels importants pour le modele sont les pixels sur lesquels se situent un oiseau. On peut donc
en conclure que le modele détecte la présence d’'un oiseau sur les images.

Le probleme est que certains des pixels importants se situe en dehors des pixels des oiseaux, tandis que d’autres ne
sont pas considérés comme important : cela montre la limite du modele a détecter correctement les oiseaux.

De plus, il s’agit d’'un modele ou la descente de gradient n’est pas effectuée : on récupere uniquement la classe qui
est prédite avec la plus grande probabilité. Or, la méthode Grad-CAM nécessite une descente de gradient pour
pondérer les pixels, donc nous forgons le modele a faire une descente de gradient, ce qui n’est pas recommandé. Une
meilleure fagon de procéder aurait été de calculer la fonction de perte par entropie croisée et de faire la descente de
gradient & partir de la. L’autre inconvénient majeur de GradCAM était le suréchantillonnage a des résultats de carte
thermique grossiers en artefacts et en perte de signal. Une autre méthode pourrait étre envisagée en remplacement
de celle-ci.
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FIGURE 17 — Résultat de la méthode Grad-CAM sur les images de test
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