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Abstract 
Understanding yield evolutions in crops, particularly the impact of 

bio  aggressors,  is  paramount  for  supporting  farmers,  researchers,  and 
policymakers.  This  is  essential  to  anticipate  the  necessary  changes  to 
maintain productivity while reducing the use of phytosanitary products, in 
line with European objectives. This article presents a statistical model of 
yields based on pests and diseases and the Treatment Frequency Index 
(IFT)  for  herbicides,  fungicides,  and  pesticides  per  plot,  using  data 
collected  over  20  years  across  France  on  thirteen  different  crops.  The 
combined use of a GAMSEL, Lasso and a Random Forest model, using R 
helps to mitigate the weaknesses of each approach to capture the non-
linear  effects  of  several  variables  on  the  target  variable  (yield),  while 
maintaining  a  good  predictive  accuracy  and  model  robustness.  Cross-
validation performed on multiple subsets (by year, by department or by 
random sampling) ensures a better generalization. The aim of this kind of 
model  is  to  guide  agricultural  practices.  Meteorological,  soil,  and 
epidemiological  data account for most of  the observed yield variations. 
The discrepancies between the theoretical yields produced by the model 
and  the  observed  yields  indicate  areas  for  improvement  to  augment 
relevance  and  avoid  overfitting.  These  differences  also  highlight  the 
complexity of consistently measuring yields, given the many influencing 
factors.  Notably,  the  interactions  between  crops  and  pests,  and  the 
resulting yield losses, are only partially captured by the model.

Résumé
Il est crucial de mieux comprendre l’évolution des rendements des 

grandes cultures, en particulier l’impact des bioagresseurs, pour aider les 
exploitants  mais  aussi  les  chercheurs  et  les  décideurs  à  anticiper  les 
changements  nécessaires  pour  maintenir  la  productivité  en  réduisant 
l’utilisation de produits phytosanitaires selon les objectifs européens. Ici, 
nous  développons  une  modélisation  statistique  des  rendements  en 
fonction des bioagresseurs et des indices de fréquence de traitement (IFT) 
herbicides, fongicides et insecticides par parcelle à partir de données sur 
les grandes cultures récoltées sur 13 ans et dans la France entière sur 13 
cultures.  L’usage  combiné  dans  R  d’un  modèle  GAMSEL,  d’un  modèle 
Lasso  et  d’un  modèle  Random Forest  permet  de  limiter  les  faiblesses 
respectives de chaque approche en capturant les effets non linéaires de 
variables explicatives sur la variable cible (le rendement), tout en gardant 
une bonne précision de prédiction et une relative robustesse du modèle. 
La validation croisée, effectuée sur plusieurs sous-ensembles (par année, 
par  département  ou  échantillonnage  aléatoire)  garantit  une  meilleure 
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généralisation.  Ce type de modélisation peut permettre à terme d’orienter 
les pratiques des exploitants. Les données météorologiques, pédologiques 
et  épidémiologiques  expliquent  la  majeure  partie  des  variations  de 
rendement  observé.  Les  différences  entre  les  rendements  théoriques 
produits  par  le  modèle  et  les  rendements  observés  montrent  que  le 
modèle  peut  être  amélioré  pour  gagner  en  pertinence  et  éviter  le 
surajustement,  et  témoignent  de  la  difficulté  de  mesurer  de  manière 
cohérente des rendements dont la variabilité dépend de très nombreux 
facteurs. En particulier, les interactions entre les cultures et les ravageurs, 
ainsi  que les  pertes de rendement qu’ils  causent,  semble échapper en 
partie à la modélisation. 
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Introduction
L’Institut  National  de  la  Recherche  pour  l’Agriculture, 

l’Alimentation  et  l’Environnement  (INRAE)  est  un  institut  public  de 
recherches. Issu de l’INRA (Institut National de Recherche Agronomique) et 
de l’IRSTEA (Institut National de Recherche en Sciences et Technologies 
pour l’Environnement et l’Agriculture), il  se consacre à la recherche sur 
l’agriculture  durable,  la  sécurité  et  la  qualité  de  l’alimentation,  la 
protection environnementale et l’impact du changement climatique. Il vise 
à  développer  et  améliorer  les  techniques  d’agriculture  en  France  pour 
répondre  aux  défis  de  l’alimentation  de  demain,  par  exemple  en 
déterminant  les  évolutions  de  rendement  des  cultures  face  à  un 
changement des pratiques culturales. 

En  2019,  selon  l’INSEE,  la  part  des  grandes  cultures  en  France 
correspondait à 48% de la Surface agricole utilisée (SAU), qui couvre 52% 
de la métropole et 2% des DOM (Annexes 1 et 2). Cette répartition est 
inéquitable : 94% de la SAU en Ile-de-France est occupée par des grandes 
cultures, contre 2% en Corse. L’agriculture joue un rôle important dans les 
exportations françaises,  lui  assurant en 2019 une balance commerciale 
agricole excédentaire de 7,8 milliards d’euros. Cependant, ce rendement 
est soumis à des pressions grandissantes de bioagresseurs de plus en plus 
résistants aux   phytosanitaires, dont l’utilisation est de plus fréquemment 
remise  en  cause  en  raison  de  leurs  effets  sur  les  sols,  les  eaux  et  la 
biodiversité (V.  Langlois,  2019).  L’impact  des  bioagresseurs  sur  les 
rendements reste difficile à évaluer (Devaud et Barbu, 2019) : la nocivité 
et la pression qu’ils exercent peut varier rapidement selon les régions ou 
les  années,  et  l’augmentation  des  résistances  complique  la  tâche  aux 
exploitants.  Il  est  en  particulier  difficile  d’évaluer  les  pertes  réelles  de 
rendements provoquées par des maladies et ravageurs en co-occurrence. 

Le projet MoCoRiBA-GC (Modélisation et Communication du Risque 
de BioAgresseurs en Grandes Cultures) est dirigé par l’INRAE depuis 2020 
en  lien  avec  différents  partenaires  (AWIUZ,  Terres  Inovia,  ITB).  Il  visait 
initialement  à  étudier  les  possibilités,  avancées  par  différentes  études 
(Butault,  2010 ;  Lechenet,  2017),  de  diminuer  l’utilisation  de  produits 
phytosanitaires de 10 à 30% sans perte de marge pour les agriculteurs en 
enrichissant en temps réel l’information disponible pour les agriculteurs et 
les conseillers. Dans ce but, des modèles statistiques ont été produits pour 
mieux intégrer la  pression des bioagresseurs sur  le  rendement dans le 
cadre des pratiques des agriculteurs. A cause de la difficulté d’obtention 
de données en temps réel, le projet s’est réorienté vers la production d’un 
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outil  qui  permette une réflexion des exploitants sur leurs pratiques par 
comparaison  avec  les  exploitations  du  réseau  DEPHY,  engagé  dans  la 
réduction  de  l’utilisation  des  produits  phytosanitaires  grâce  à  des 
nouvelles  pratiques  et  techniques  culturales.  Une  version  test  de 
l’application est en développement. 

Mon stage s’inscrit dans le projet MoCoRiBA sur la thématique de 
modélisation de l’impact des bioagresseurs sur le rendement en fonction 
des traitements phytosanitaires. L’objectif est d’améliorer la quantification 
de cet impact en appliquant dans R des modèles statistiques aux données 
de l’équipe. Dans un premier temps, il s’agit d’adapter et d’améliorer un 
modèle GAMSEL de rendement potentiel de 13 cultures parmi l’ensemble 
des  cultures  sur  lesquelles  le  jeu  de  données  est  suffisamment 
conséquent. Par la suite, différents modèles (LASSO, Random Forest) sont 
testés  et  adaptés  pour  améliorer  leur  pertinence  et  la  qualité  des 
prédictions.  

Données et méthode
Cette étude cherche à évaluer l’impact des bioagresseurs (maladies 

et  ravageurs)  sur  le  rendement  des  grandes  cultures,  en  utilisant  la 
modélisation statistique (forêts aléatoires, Lasso et Gamsel). Les données 
des du réseau d’épidémiosurveillance utilisées pour les BSV (Bulletin de 
Santé  du  Végétal),  associées  aux  données  de  rendement  utilisés, 
renforcent  l’efficacité  des  modèles  statistiques  du  fait  de  la  taille  de 
l’échantillon  et  des  grandes  échelles  spatiales  sur  lesquelles  il  est 
distribué. 

1. Bref état de l’art
La modélisation joue un rôle majeur dans l’analyse et la conception 

des systèmes de culture (Gonzalez-Sanchez  et al., 2014), en particulier 
dans l’estimation des rendements, auxquels participent de très nombreux 
facteurs environnementaux (climat, sols), facteurs économiques (marchés 
et  filières)  et  agronomiques  (irrigation,  traitement,  rotation  culturale, 
travail du sol). Même si des estimateurs simples, comme la moyenne des 
rendements précédents, peuvent être utilisés, la variation des rendements 
n’est pas linéaire. 

Les  modèles  mécanistes  permettent  de  simuler  directement  le 
mécanisme responsable de la relation entre deux variables : ils sont basés 
sur  la  compréhension  des  interactions  entre  différentes  parties  d’un 
système,  et  sont  construits  sur  des  principes  théoriques  et  des  lois 
physiques ou biologiques. Ils permettent des prédictions détaillées et très 
précises.  Si  la  plupart  des  modèles  mécanistes  de  rendement  sont 
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spécifiques à une culture, certains modèles comme STICS (Brisson et al., 
1998) sont facilement adaptables grâce à l’ajustement des paramètres. 
Cependant, ces modèles sont coûteux et peu pratiques car gourmands en 
temps de développement et de calcul, ce qui les rend peu applicables à la 
planification agricole à grande échelle (Drummond et al., 2003).  

En  revanche,  la  modélisation  basée  sur  l’analyse  des  données 
permet de prédire ou de comprendre des relations entre variables, sans 
forcément connaître en profondeur les mécanismes sous-jacents. Cela leur 
apporte une grande flexibilité malgré leur forte dépendance à la qualité 
des données utilisées (Drummond et al., 2003). L’un des risques majeurs 
associés à la modélisation statistique est le surajustement à des variables 
non  déterminantes  qui  se  trouvent  par  accident  corrélées  dans  la 
prédiction à une caractéristique des données. La méthode de la validation 
croisée  (cross  validation)  permet  de  comparer  les  prédictions  avec  les 
observations réalisées sur des données indépendantes, qui n’ont pas servi 
lors de l’ajustement du modèle. Si l’erreur observée est similaire à l’erreur 
des  données  d’ajustement,  alors  le  modèle  n’a  pas  réalisé  de 
surajustement.  Le  machine  learning offre  des  outils  puissants  pour  la 
prédiction des rendements des cultures. Par exemple, parmi les modèles 
linéaires, un classifieur bayésien naïf peut être utilisé pour modéliser les 
rendements en utilisant des prédicteurs continus et discrets tels que la 
température, le CO2, le déficit de pression de vapeur et le rayonnement 
solaire (Qaddoum, 2014). Cette méthode classe les données en supposant 
les attributs indépendants les uns des autres. 

Ont été utilisées également les méthodes de régression, telles que la 
régression linéaire multiple,  les arbres de régression M5-Prime, les MLP 
(multilayer perceptron), qui utilisent plusieurs couches de neurones pour 
apprendre  des  représentations  complexes  de  données  et  modéliser  les 
relations non linéaires entre les variables d’entrée et les rendements, et la 
régression par Support Vector (SVR), qui minimise les erreurs de prédiction 
tout en maximisant la marge entre les données (González Sánchez, 2014). 

Les modèles  random forest,  ou « forêt aléatoire », qui utilisent un 
ensemble d’arbres de décision pour améliorer la précision et combinent les 
résultats  de  plusieurs  arbres,  ont  montré  une  grande  précision  (Priya, 
2018), tandis que les SVM (support vector machine) ont également été 
efficaces,  surtout  pour  gérer  des  jeux  de  données  complexes  (Bondre, 
2019). 

Les modèles additifs généralisés (GAM), qui permettent de modéliser 
les relations non linéaires entre des variables, combinés avec la régression 
LASSO, permettent de sélectionner les variables les plus pertinentes en 
simplifiant le modèle (Devaud et Barbu, 2019).
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Dans  le  cadre  de  la  réduction  de  l’utilisation  des  produits 
phytosanitaires, des expérimentations sur les systèmes de culture ont pu 
être menées pour mesurer la réduction du rendement atteignable. Selon 
une  étude  menée  en  France  sur  946  fermes  par  Lechenet  (2017),  on 
pourrait  réduire  les  herbicides  de  37%,  les  fongicides  de  47%  et  les 
insecticides de 60% sans avoir d’effets négatifs sur la production ou les 
revenus de l’exploitation, à condition d’adopter localement des itinéraires 
techniques  semblables  pour  plusieurs  exploitations  et  de  privilégier 
l’utilisation de biopesticides, la rotation des cultures, et un travail du sol 
pertinent. 

2. Concepts 
Le rendement potentiel (Yp) est le rendement d’une culture lorsque 

les apports en eau et en nutriments sont non limitants et lorsque le stress 
biotique est efficacement contrôlé ( (Evans, 1993). Lorsqu’elle est cultivée 
dans  ces  conditions,  la  production  et  la  croissance  sont  déterminées 
uniquement  par  le  rayonnement  solaire,  la  température,  le  CO2 
atmosphérique,  l’interception  de  lumière  par  la  canopée  et  les  traits 
génétiques  du  cultivar.  Le  rendement  potentiel,  même  s’il  est 
théoriquement  spécifique  à  un  lieu  précis  (conditions  climatiques  et 
environnementales), ne dépend pas des autres propriétés du sol. Pour des 
cultures pluviales, on utilisera plutôt le rendement limité par l’eau (Yw), 
qui peut être également utile pour des cultures irriguées, et qui dépend 
aussi  du  type  de  sol  (capacité  de  rétention  d’eau,  profondeur 
d’enracinement) et de la topographie de la parcelle (ruissellement).  On 
calcule Yp et Yw pour des dates de semis recommandées, une densité de 
semis et un cultivar donné. 

Le  rendement  moyen atteint  (Ya)  est  le  rendement  effectivement 
obtenu au champ. Le contexte et les pratiques culturales sont des facteurs 
majeurs  de  la  croissance :  le  rendement  doit  être  maximisé  pour 
l’ensemble  du  système  cultural  et  non  simplement  pour  les  bénéfices 
d’une  culture.  Le  Ya  dépend  effectivement  des  pratiques  de  gestion 
majoritaires dans une région donnée (date de semis, cultivar, densité de 
semis, gestion des nutriments, protection et traitement des cultures). 
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L’écart  de  rendement  (Yg)  est  la  différence  entre  le  rendement 
potentiel (Yp ou Yw) et le rendement réel (Ya). Il est impossible pour la 
majorité  des  exploitants  d’atteindre  effectivement  l’équilibre  dans  les 
pratiques culturales nécessaire pour atteindre le rendement potentiel, et il 
n’est pas généralement rentable de chercher à le faire à cause d’un effet 
plafond : la réponse du rendement aux intrants diminue lorsqu’on atteint 
certains niveaux d’IFT, indice de fréquence de traitement (Koning et al., 
2008) ; l’efficacité de l’utilisation des ressources diminue également avec 
les  facteurs  de  rendement,  comme  les  températures  élevées,  les 
précipitations  variables,  les  vents  forts  (risque  de  verse  accru).  Le 
changement  climatique  (température  et  disponibilité  en  eau)  affecte 
directement  et  indirectement  ces  rendements  par  les  adaptations  qu’il 

exige (date de semis, changements chez les ravageurs et maladies). 
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Figure 1 : Niveaux de production selon leurs facteurs de définition, limitants ou de 
réduction (a). L’écart de rendement (b) représente l’écart entre le rendement 
atteint et 80% du rendement potentiel (source : adapté de van Ittersum et al., 
2012). 



3. Données 
Les données utilisées au cours de cette étude proviennent de bases 

de  données  nationales,  telles  que  le  réseau  DEPHY,  du  réseau 
d’épidémiosurveillance  (Epiphyt  et  Vigicultures®),  et  de  la  base 
météorologique SAFRAN. Les régions sélectionnées sont représentatives 
des  zones  de  culture  majeures  en  France,  permettant  une  bonne  vue 
d'ensemble des conditions agricoles et environnementales.

Plusieurs filtres ont été appliqués pour garantir la qualité du jeu de 
données : les informations manquantes ont été supprimées, de même que 
les données incohérentes, comme un IFT fongicide supérieur à 30 ou des 
rendements de blé tendre d’hiver supérieurs à 200 q.ha-1. 

A. Les données Agrosyst

Elaboré pour  le  réseau DEPHY par  l’INRAE dans le  cadre du plan 
Ecophyto,  le  Système  d’Information  (SI)  Agrosyst  sert  d’appui  à  la 
description et à l’évaluation des systèmes de culture (Ancelet et al., 2015), 
en partenariat avec de nombreux partenaires et exploitants. L’un de ses 
objectifs  revendiqués  est  la  diminution  de  l’usage  des  produits 
phytosanitaires. 

Dans  le  cadre  de  la  préparation  des  données  pour  le  projet 
MoCoRiBA-GC  (Lay,  2020),  sont  notamment  utilisées  les  données  des 
itinéraires  techniques  (par  exemple  d’IFT,  Indice  de  Fréquence  de 
Traitement) des fermes du réseau DEPHY. Deux types d’informations ont 
été rassemblées : 

- Réalisé : décrit les itinéraires techniques sur chaque parcelle pour 
chaque  année  de  récolte  (cultures,  interventions,  mesures  et 
observations)

- Synthétisé :  décrit  les  itinéraires  relatifs  à  plusieurs  parcelles  au 
même stade de la rotation (même culture, même précédent cultural, 
même place dans la rotation), agrégées en supprimant la dimension 
spatiale de la parcelle. Il couvre une ou plusieurs années de récoltes. 

Nous avons utilisé les données provenant de 13 cultures : betterave, 
blé tendre d’hiver, blé dur d’hiver, colza d’hiver, maïs ensilage, maïs grain, 
orge d’hiver, orge de printemps, pois d’hiver, pois de printemps, pomme 
de terre, tournesol et triticale. L’anonymisation a été faite préalablement à 
notre réception des données, en supprimant les noms des agriculteurs, 
des exploitations et  des parcelles,  mais  le  nom du département,  de la 
commune et le numéro de ferme DEPHY ont été conservés. Nous n’avons 
accès qu’au code INSEE des exploitations. 
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Les données sur la réserve utile (RU) ont été obtenues en croisant les 
données Agrosyst avec les données de Gis Sol et en faisant la moyenne 
des données de chaque classe par commune. 

B. Les données Safran

Le choix d’utiliser ces données climatiques de travaux antérieurs de 
l’équipe  (Chevaleyre,  2023).  Les  données  climatiques  Safran  sont  les 
résultats d’un modèle mécaniste climatique dans lequel ont été assimilées 
les données d’observations collectées par Météo France depuis plusieurs 
décennies. Ces données sont disponibles à la résolution spatiale de 8km 
par 8km, et au pas de temps journalier. Ces données permettent ensuite 
d’établir  des  modèles  de bioagresseurs  sur  une base climatique précis 
localement.  Les  variables  extraites  pour  nos  modèles  (Lay,  2020) 
concernent  les  températures  minimales,  moyennes  et  maximales  pour 
chaque  année  de  récolte,  l’évapotranspiration  (ETP  en  mm),  les 
précipitations  (mm),  le  rayonnement.  A  partir  de  ces  données  les 
indicateurs suivants ont calculés :  le nombre de jours de pluie, le nombre 
de jours où la température minimale était inférieure à -17°C, le nombre de 
jours où la température maximum était comprise entre 0 et 10°C, et le 
nombre de jours où la température maximale dépassait les 34°C. Chaque 
parcelle Agrosyst est associée aux mailles Safran les plus proches grâce 
au code INSEE de l’exploitation.

C. Les données d’épidémiosurveillance

Les données d’observations concernant les bioagresseurs (maladies 
et  ravageurs)  proviennent  de  la  base  de  données  Vigicultures®,  qui 
centralise des données publiques et privées. Vigicultures®   est administré 
par les structures représentatives de leurs cultures et filière (Arvalis, Terres 
Inovia, ITB, ASTREDHOR, IFV, CDAF, ACTA). Les données hebdomadaires 
ont  été  moyennées  à  l’année  pour  chaque  parcelle  (Arvalis,  2020),  et 
traitées  par  interpolation  et  krigeage  par  des  travaux  antérieurs
(Chevaleyre, 2023). 
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4. Prédiction du rendement potentiel
Nous avons implémenté un modèle de régression semi paramétrique 

(permettant de capturer des relations non linéaires dans les données sans 
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Tableau 1 : Liste des ravageurs et maladies pris en compte dans les modèles pour 
les 13 cultures identifiées. 



faire d’hypothèse sur leur forme) en utilisant le modèle additif généralisé 
(GAM). La relation entre la variable dépendante et chacune des variables 
explicatives  est  modélisée  comme  somme  de  fonctions  lisses  qui 
représentent chacune une partie non paramétrique de la relation : 

 

Ici, on utilise des splines pour modéliser les effets non linéaires des 
variables  explicatives  sur  le  rendement  des  cultures,  en  utilisant  le 
package de R ‘gamsel’. Pour chacune des 13 cultures d’intérêt, après avoir 
supprimé les valeurs manquantes, on extrait les variables climatiques et la 
RU, variables explicatives, et le « rendZone », rendement réel à prédire. 
Les données sont converties en matrices pour être compatibles avec les 
fonctions  du  package  ‘gamsel’.  Pour  l’ajustement  des  paramètres  du 
modèle,  on  a  fixé  les  degrés  de  liberté  à  3  pour  chaque  variable 
explicative. Par validation croisée, on détermine le meilleur paramètre de 
régularisation (lambda.1se), qui garantit le meilleur équilibre entre le biais 
et la variance du modèle. Ce lambda contrôle la complexité du modèle 
pour éviter le surajustement en réduisant la variance. Plus sa valeur est 
élevée, plus le modèle est lissé, au risque de perdre en pertinence. Le 
lambda.1se est la valeur de lambda qui minimise l’erreur de validation 
moyenne,  soit  le  plus grand lambda qui  produise un modèle avec une 
erreur de validation proche du meilleur modèle, mais avec une meilleure 
régularisation. L’usage de lambda.1se permet d’obtenir  un modèle plus 
robuste aux variations des données d’entraînement,  ce qui  permet une 
interprétation plus facile, quitte à sacrifier un petit peu de la performance 
optimale. 

Grâce  à  la  fonction  « getActive »  de  ‘gamsel’,  on  sélectionne  les 
variables explicatives actives, en prenant en compte à la fois les effets 
linéaires et non linéaires, puis les variables linéaires sont utilisées pour 
formuler un Gam sous forme de spline. On fait ensuite la prédiction ajustée 
aux données par culture. 

L’évaluation  des  performances  du  modèle  est  faite  à  partir  de 
l’erreur  quadratique  moyenne  (RMSE),  l’erreur  moyenne  (ME)  et  les 
coefficients de détermination (R2). 
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5. L’impact des bioagresseurs sur le rendement

A. Le Modèle Random Forest

Pour  analyser  l’impact  des  ravageurs  sur  le  rendement  et  la 
mitigation  de  cet  impact  par  les  traitements  herbicides,  fongicides  et 
insecticides, un gros ensemble de données a été traité grâce au modèle 
Random Forest (RF), qui a permis d’en évaluer l’importance relative. Les 
packages R ‘dplyr’ et ‘randomForest’ ont été utilisés. Le modèle RF a été 
choisi pour sa robustesse de prédiction et sa capacité à traiter de grands 
ensembles de données en modélisant les relations complexes entre les 
caractéristiques  des  cultures  et  de  l’environnement  d’une part,  et  leur 
rendement  d’autre  part.  Plusieurs  arbres  de  décision  (500)  ont  été 
combinés dans le modèle RF pour améliorer la précision des prédictions et 
réduire le surajustement. Chaque arbre est construit à partir d’un sous-
ensemble  aléatoire  des  données,  et  la  prédiction  finale  repose  sur 
l’agrégation des résultats issus de tous les arbres. Chaque split prend en 
compte un certain nombre de variables (par défaut, la racine carrée du 
nombre total de variables) pour éviter le surajustement. 

Les  données  ont  été  préparées  en  sélectionnant  les  variables 
explicatives par la suppression de certains éléments du jeu de données 
pour  alléger  le  modèle,  comme les  identifiants  des parcelles.  Elles  ont 
ensuite  été  divisées  selon  chaque  culture,  pour  laquelle  un  modèle 
Random Forest  est  ajusté.  Lors  de la  construction de chaque arbre du 
modèle,  à  chaque  nœud  de  décision,  on  sélectionne  aléatoirement  un 
certain nombre de caractéristiques parmi lesquelles on choisit le meilleur 
attribut  pour  diviser  les  données.  La  prédiction  finale  est  obtenue  par 
agrégation des prédictions et sélection de la classe majoritaire parmi tous 
les arbres.  Une validation croisée interne est réalisée avec les données 
d’entraînement  pour  vérifier  les  performances  du  modèle,  puis  4 
validations  croisées  différentes  ont  été  effectuées :  par  année,  par 
département, par échantillonnage aléatoire et par année et département 
combinés. A chaque fois, les données ont été divisées en un ensemble 
d’entraînement,  sur  lequel  ont  été  réalisées  les  prédictions,  et  un 
ensemble de test, pour évaluer les performances du modèle en termes de 
RMSE  (erreur  quadratique  moyenne),  erreur  moyenne  et  R2.  Enfin,  les 
résultats  de  tous  les  groupes  de  test  sont  agrégés  pour  fournir  une 
évaluation globale de la  performance du modèle,  en utilisant  la  RMSE, 
l’erreur moyenne absolue, le pourcentage moyen d’erreur absolue et le R2. 

 Pour  analyser  les  résultats  du  modèle  RF,  on  a  extrait  les  30 
variables  les  plus  influentes  en  se  basant  sur  le  pourcentage 
d’augmentation  du  MSE  et  on  a  sélectionné  leur  importance  (fonction 
« importance » du package ‘randomForest’) dans la variabilité du modèle, 
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puis  on  a  réalisé  des  graphiques  pour  visualiser  cette  importance  et 
faciliter l’interprétation pour chaque culture. 

Pour analyser les interactions, on a d’abord étudié les interactions 
dans le modèle entre l’indice de fréquence de traitement (IFT) fongicide et 
pesticide et les bioagresseurs correspondant à chaque type. Pour chaque 
culture, on a ajusté les données en fonction des niveaux de pression des 
maladies (de 0 à 1 par incrément de 0,2), puis on a prédit les rendements 
en faisant varier les IFT. Des graphes lissés et des boxplots ont été réalisés 
pour chaque culture et niveau de pression des maladies et ravageurs. 

B.Le modèle Gamsel
Les données ont été traitées par un modèle additif généralisé avec 

sélection  automatique  des  variables  les  plus  pertinentes.  Nous  avons 
ajouté aux données les interactions spécifiques à chaque culture entre les 
bioagresseurs,  classifiés  en  maladies  et  ravageurs,  et  les  traitements 
insecticides et fongicides pour étudier leur impact sur le rendement, en 
multipliant  les  variables  des  bioagresseurs  avec  les  variables  de 
traitement  correspondantes,  pour  modéliser  les  effets  combinés  sur  le 
rendement. Le modèle a tourné avec et sans normalisation des données 
pour faciliter l’interprétation. Les colonnes ayant moins de trois valeurs 
uniques  ont  été  supprimées pour  permettre  un ajustement  efficace du 
modèle. 

L’analyse effectuée sur le modèle Gamsel montre comment évoluent 
les coefficients non nuls dans le modèle, répartis en termes linéaires et 
non linéaires. La qualité d’ajustement du modèle est analysée grâce au 
pourcentage de déviance expliqué par le modèle. Au fur et à mesure que 
le lambda choisi pour la modélisation (paramètre de régularisation) varie, 
la  complexité  du  modèle  augmente :  les  pourcentages  de  déviance 
expliqués sont croissants, ce qui indique une meilleure explication de la 
variance du rendement (variable de réponse). Pour chaque culture, on a 
déterminé la valeur optimale du paramètre de régularisation « lambda » 
grâce  à  la  validation  croisée.  Le  lambda  pour  lequel  les  erreurs  de 
validation  croisée  cessent  de  diminuer  de  manière  monotone  a  été 
identifié, avec une marge d’un écart-type au-dessus de l’erreur minimale 
monotone. 

La validation croisée est appliquée au modèle sur les mêmes critères 
de sélection que pour  le  modèle  RF (par  année,  par  département,  par 
échantillonnage aléatoire et en combinant années et départements). 

Les performances du modèle ont été évaluées grâce à la RMSE, pour 
mesurer l’erreur quadratique moyenne entre les valeurs prédites et  les 
valeurs observées, grâce à l’erreur moyenne, et par R2. 
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Par évaluation croisée des effets des bioagresseurs par culture, en 
tenant compte des variations de rendement selon les traitements, on a 
déterminé si  l’effet des bioagresseurs sur  le  rendement était  croissant, 
décroissant  ou  stable  en  évaluant  les  pentes :  plus  la  pression  des 
bioagresseurs est forte, plus le rendement diminue, et inversement. Cette 
analyse a permis de distinguer les cas de surcompensation du modèle, 
d’inefficacité  du traitement,  ou de l’absence d’effet.  Enfin,  par  analyse 
statistique,  on  a  évalué  la  significativité  des  résultats  du  modèle  par 
rapport au hasard. 

C.Le modèle GLM Lasso 
Le même ensemble de données a  enfin été traité  par  régression 

avec  un  modèle  GLM  LASSO  (Least  Absolute  Shrinkage  and  Selection 
Operator), utilisé pour la sélection de variables en grand nombre. Il ajoute 
une  pénalité  à  la  somme  des  valeurs  absolues  des  coefficients  des 
variables explicatives, selon un paramètre de contrôle lambda. La fonction 

de coût pour le Lasso est la suivante : 

Le Lasso permet à certains coefficients de devenir exactement nuls, 
donc de sélectionner automatiquement les variables pertinentes pour le 
modèle. Cela permet de limiter  l’overfitting, encore trop présent dans le 
Random  Forest,  et  améliore  la  généralisation  du  modèle.  Après  avoir 
importé  les  données  pertinentes,  en  supprimant  certaines  colonnes, 
comme les identifiants des parcelles, on a ajouté au modèle de rendement 
les  interactions  entre  bioagresseurs  (maladies  et  ravageurs)  et  les  IFT 
correspondantes  (pesticides  et  fongicides).  Les  variables  des 
bioagresseurs ont été forcée négativement : l’activité des bioagresseurs 
sur une parcelle ne peut pas améliorer son rendement. Le modèle a tourné 
avec  et  sans  l’inclusion  du  rendement  potentiel  (PredGamSel)  obtenu 
précédemment avec le modèle de rendement, pour évaluer la validité des 
performances du modèle et obtenir une meilleure estimation des relations 
entre variables explicatives et rendement, et éviter le surajustement en 
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améliorant  la  généralisation.  Les  données  ont  été  normalisées  et 
standardisées pour faciliter l’analyse et l’interprétation, puis le modèle a 
été  ajusté  avec  le  package  R  ‘glmnet’.   Par  validation  croisée  interne 
(fonction « cv.glmnet »), le meilleur paramètre de régularisation lambda a 
été choisi. Les résultats du modèle incluent les coefficients, les prédictions 
et le meilleur lambda pour chaque culture.  La robustesse du modèle a 
ensuite été testée par validation croisée. La validation croisée est utilisée 
encore une fois par année, par département, par échantillonnage aléatoire 
et par année et département combinés. 

Pour  analyser  les  interactions  spécifiques  à  chaque  culture,  une 
colonne  d’interaction  a  été  ajoutée  en  multipliant  les  variables  de 
maladies et les fongicides et les ravageurs et insecticides. 

Résultats
Les différentes modélisations menées sur les 13 cultures du jeu de 

données  ont  permis  d’établir  quelques  résultats  quant  à  l’impact  des 
bioagresseurs sur le rendement et à la réduction de cet impact par les 
traitements pesticides et fongicides. Le jeu de données utilisé s’est révélé 
inégal selon les cultures, étant proportionnel aux surfaces nationales de 
chacune  de  ces  cultures,  ce  qui  a  impacté  la  capacité  du  modèle  à 
produire des résultats fiables. Ainsi, les données pour le blé tendre d’hiver 
sont les plus abondantes (Tableau 2). 

Fonctionnement global des 
modèles 

Les différentes  modélisations  réalisées  visaient  à  mieux connaître 
l’impact des bioagresseurs sur le rendement, et dans quelle mesure les 
traitements  phytosanitaires  permettent  de  réduire  cet  impact.  Les 
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Tableau 2 : Visualisation de la quantité de points de données pour 
chaque culture étudiée. 

Betterave 2432
Blé dur d'hiver 1376

Blé tendre 
d'hiver

28914

Colza d'hiver 7565
Maïs ensilage 7606

Maïs grain 8388
Orge d'hiver 7388

Orge de 
printemps

3970

Pois d'hiver 582
Pois de 

printemps
1702

Pomme de terre 1478
Tournesol 3538
Triticale 1755



données traitées, issues du réseau DEPHY, reflètent déjà une utilisation 
optimisée  des  traitements  phytosanitaires :  dans  la  majeure  partie  des 
cas, les rendements modélisés ne témoignent pas d’un usage trop intensif 
de ces traitements. 

Le Modèle Random Forest a livré des performances variables selon 
les cultures, ce qui s’explique en partie par les disparités dans le nombre 
de points de données. Ses performances globales sont les suivantes : 

1. Performance par Culture

Crop
Mean 
Yield RMSE RRMSE

R-
squared

Betterave 13.72145 2.285658
0.166575
5

0.226080
9

Blé dur 
d'hiver 52.57088 14.48337

0.275501
8

0.431800
6

Blé tendre 
d'hiver 69.42566 14.45683

0.208234
7

0.529511
8

Colza d'hiver 31.26417 7.72228
0.247000
9

0.389411
2

Maïs ensilage 13.2282 2.985043
0.225657
6 0.371006

Maïs grain 92.45134 20.89219
0.225980
4

0.546425
8

Orge d'hiver 62.40712 12.56411 0.201325
0.432709
4

Orge de 
printemps 55.74812 13.00184

0.233224
6

0.463181
5

Pois d'hiver 31.0467 12.6367
0.407022
4

0.354647
6

Pois de 
printemps 33.58583 11.7251

0.349108
6

0.358242
2

Pomme de 
terre 45.26446 8.629249

0.190640
7

0.145124
4

Tournesol 22.522 6.173994
0.274131
8

0.418914
5

19



Triticale 52.12668 12.42789 0.238417
0.474724
7

2. Performance Globale des Modèles
- Modèle Moyen Toutes Années Confondues

o RMSE : 16.82524
o RRMSE : 0.3227761
o R2 : 0.5000489

- Modèle Moyen Par Année
o RMSE moyen : 14.79302
o RRMSE moyen: 0.2878096

La RMSE permet d’évaluer les biais systématiques : le choix de ce 
paramètre permet une bonne évaluation globale du modèle. Ici, elle n’est 
pas normalisée : elle est à rapporter aux valeurs de rendement de chaque 
culture.  La  RRMSE  permet  de  normaliser  la  RMSE  en  fonction  du 
rendement moyen.

Les résultats des modèles révèlent des différences significatives en 
termes de précision de prédiction entre  les  différentes  cultures.  Le blé 
tendre d’hiver et le maïs grain ont un R2 assez élevé, ce qui indique une 
bonne explication par le modèle de la variabilité des rendements, et une 
RRMSE relativement basse, ce qui indique une précision assez bonne des 
prédictions.  En revanche, certaines cultures comme la pomme de terre 
sont moins performantes, avec un R2 inférieur à 0,2. Les RRMSE les plus 
élevées,  pour  le  pois  d’hiver  et  le  pois  de  printemps,  montrent 
d’importantes erreurs de prédictions. Globalement, avec un R2 de 0,5, le 
modèle  a  une  bonne  performance  pour  expliquer  la  variabilité  des 
rendements. Cependant, la RRMSE moyenne est plus faible pour le modèle 
moyen par année, ce qui suggère que les modèles s’ajustent mieux aux 
variations  spécifiques  d’année  en  année,  montrant  l’importance  des 
facteurs annuels dans la précision des prédictions. 

Le modèle Gamsel a également livré des performances variables : 

1. Performances par culture : 

Culture R2 RMSE
Rdt 
moyen RRMSE

Betterave 0.4379 16.1546 81.9791 0.1971
Blé dur 
d'hiver 0.3775 15.4332 53.0875 0.2907
Blé tendre 
d'hiver 0.3421 17.9423 69.4382 0.2584
Colza d'hiver 0.3351 7.8233 32.3782 0.2416
Maïs ensilage 0.1898 4.1576 13.1643 0.3158
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Maïs grain 0.3345 25.9026 91.6950 0.2825
Orge d'hiver 0.2652 15.5860 62.2750 0.2503
Orge de 
printemps 0.3006 15.6773 55.8673 0.2806
Pois d'hiver 0.3652 12.6703 29.0122 0.4367
Pois de 
printemps 0.2945 12.6282 33.8029 0.3736
Pomme de 
terre 0.4182 9.4882 43.1769 0.2198
Tournesol 0.2157 7.4913 22.5479 0.3322
Triticale 0.3234 14.6341 50.7399 0.2884

2. Performances globales : 
- R2 :  0.3748
- RRMSE : 0,2639

Les résultats révèlent des variations significatives de performances 
du  modèle :  il  est  plus  efficace  pour  expliquer  les  variations  de 
rendements pour la betterave ou le blé tendre d’hiver que pour le maïs 
ensilage. Des valeurs basses de RRMSE indiquent une meilleure précision 
des  prédictions  par  rapport  aux  rendements  attendus,  tandis  que  des 
valeurs élevées, comme pour le pois de printemps, suggèrent des erreurs 
de  prédictions  plus  grandes  par  rapport  aux  rendements  moyens. 
Globalement, avec un R2 de 0,37, le modèle a une performance correcte 
mais  pas  excellente,  et  une  erreur  relative  modérée  par  rapport  aux 
rendements moyens. 

Les  graphes  d’importance  des  variables  dans  l’élaboration  du 
rendement  ont  été  établis  pour  le  modèle  RF (Annexe).  Ils  sont 
relativement  consistants  avec  la  littérature  en  ce  qui  concerne  le 
rendement  des  grandes  cultures.  Ainsi,  pour  le  blé  tendre  d’hiver  par 
exemple, les variables les dont l’importance est la plus élevée sont, outre 
le rendement potentiel prédit par notre modèle et le rendement standard 
fourni  par  DEPHY,  la  fertilisation  minérale  en  azote,  l’IFT  fongicide,  le 
travail du sol avant semis, l’IFT herbicide et la date de semis. Viennent 
ensuite les premiers bioagresseurs et les variations climatiques. 

Maladies 

L’un  des  buts  de  ce  stage  était  de  quantifier  les  impacts  sur  le 
rendement des maladies, et la façon dont les traitements phytosanitaires 
peuvent  mitiger  cet  impact,  en  utilisant  les  données  d’un  réseau 
d’exploitation qui vise à en réduire l’usage. Dans le cas des maladies, nous 
avons pu constater au cours des différentes modélisations que les modèles 
rendent  bien  compte  d’un  impact  sur  le  rendement.  La  culture  pour 
laquelle les modèles ont le mieux fonctionné est le blé tendre d’hiver, en 

21



raison du grand nombre de points de données qui ont permis une bonne 
prédiction. 

D’après le modèle Gamsel, pour les cultures de blé tendre d’hiver, 
de  pois  d’hiver  et  de  triticale,  le  modèle  montre  que  le  traitement 
compense la perte de rendement occasionnée par les maladies (Tableau 
3). Pour le colza d’hiver et l’orge de printemps, cette compensation n’est 
que partielle. Pour le tournesol, le traitement ne compense pas la perte de 
rendement  liée  aux  maladies.  Le  modèle  RF  (Annexe  5)  donne  des 
résultats un peu différents : blé tendre d’hiver, colza d’hiver et pois d’hiver 
semblent montrer une bonne compensation de l’impact des maladies par 
les traitements phytosanitaires, tandis que pois de printemps, tournesol et 
triticale montrent une compensation partielle (Annexe 4). 

Dans le tableau suivant, nous avons rassemblé les résultats donnés 
par le modèle RF et le modèle Gamsel pour les maladies, selon les critères 
que voici : 

- Pression  BA  négative :  les  bioagresseurs  exercent  une  pression 
négative sur les rendements, qui diminuent

- Pression BA neutre :  les bioagresseurs n’exercent pas de pression 
significative sur le rendement d’après nos modélisations, ce qui peut 
révéler un problème dans le modèle

- Pression  BA  positive :  les  bioagresseurs  exercent  une  pression 
positive sur le rendement, qui augmente : c’est très probablement 
un problème dans notre modèle

Impact 
des 

Bioagress
eurs (BA)

Impact 
des 

traiteme
nts (IFT)

Représentation 
schématique des 

évolutions de 
rendement

Cultures 
correspondan
tes d'après le 

modèle 
GAMSEL 

(nombre de 
maladies)

Cultures 
correspondant
es d'après le 
modèle RF 
(nombre de 
maladies)
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Pression 
BA 

négative 
(le 

rendement 
diminue)

Le 
traitement 
compense 
la perte de 
rendemen

t

Blé tendre 
d'hiver (7) 

Pois d'hiver (5) 
Triticale (6)

Blé tendre 
d’hiver (7)

Colza d’hiver (2)
Pois de 

printemps (4)

Le 
traitement 
compense 
partiellem

ent la 
perte de 

rendemen
t

Colza d'hiver 
(2) 

Orge de 
printemps (3)

Pois d’hiver (5)
Tournesol (2)
Triticale (6)

Le 
traitement 

ne 
compense 

pas la 
perte de 

rendemen
t

Tournesol (2)
Aucun cas dans 

nos
modélisations

Le 
traitement 
aggrave la 
perte de 

rendemen
t

Aucun cas dans 
nos 

modélisations

Aucun cas dans 
nos

modélisations
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Pression 
BA neutre 

(le 
rendement 
n'est pas 
impacté)

Le 
traitement 
surcompe

nse la 
perte de 

rendemen
t

Orge d'hiver 
(4) 

Pois de 
printemps (5) 

Pomme de 
terre (2)

Orge d’hiver (4)

Le 
traitement 

n'a pas 
d'effet

Betterave (2) 
Maïs ensilage 

(0) 
Maïs grain (0)

Betterave (2)
Maïs grain (0)

Maïs ensilage (0)

Le 
traitement 
a un effet 
négatif sur 

le 
rendemen

t

Aucun cas dans 
nos 

modélisations

Aucun cas dans 
nos

modélisations

Pression 
BA positive 

(le 
rendement 
augmente)

Le 
traitement 
augmente 
beaucoup 

le 
rendemen

t

Blé dur d'hiver 
(7)

Blé dur d’hiver 
(7)

Orge de 
printemps (3)
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Le 
traitement 
augmente 
légèremen

t le 
rendemen

t

Aucun cas dans 
nos 

modélisations

Pomme de terre 
(2)

Le 
traitement 
diminue le 
rendemen

t

Aucun cas dans 
nos 

modélisations

Aucun cas dans 
nos

modélisations

 

Ravageurs 

Les modèles utilisés ont été moins bons pour prédire comment les 
ravageurs affectent les rendements et quel est l’impact des traitements 
phytosanitaires  sur  ce  dernier  en  utilisant  les  données  DEPHY.  Ainsi, 
aucune des cultures ne montre à la fois un impact négatif des ravageurs 
sur le rendement et une compensation de cet impact par les traitements 
insecticides pour le modèle Gamsel (Annexe 4). Pour le modèle RF (Annexe 
5),  seuls  l’orge  de  printemps,  l’orge  d’hiver  et  le  pois  de  printemps 
montrent, assez faiblement, une pression des ravageurs sur le rendement. 

Impact 
des 

Bioagress

Impact 
des 

traiteme

Représentation 
schématique des 

évolutions de 

Cultures 
correspondan
tes d'après le 

Cultures 
correspondant
es d'après le 
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Tableau 3 : Résultats de la modélisation : impact des maladies et mitigation des traitements 
phytosanitaires. Le seuil d’acceptation a été fixé à 5%. 



eurs (BA) nts (IFT) rendement

modèle 
GAMSEL 

(nombre de 
ravageurs)

modèle RF 
(nombre de 
ravageurs)

Pression BA 
négative 

(le 
rendement 
diminue)

Le 
traitement 
compense 
la perte de 
rendemen

t

Aucun cas dans 
nos

modélisations

Aucun cas dans 
nos

modélisations

Le 
traitement 
compense 
partiellem

ent la 
perte de 

rendemen
t

Aucun cas dans 
nos

modélisations

Orge de 
printemps (1)

Orge d’hiver (1)
Pois de 

printemps (3)

Le 
traitement 

ne 
compense 

pas la 
perte de 

rendemen
t

Tournesol (3)
Betterave (1)

Betterave (4)
Maïs ensilage (1)
Pomme de terre 

(2)
Triticale (1)

Le 
traitement 
aggrave la 
perte de 

rendemen
t

Aucun cas dans 
nos

modélisations

Aucun cas dans 
nos

modélisations
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Pression BA 
neutre (le 
rendement 
n'est pas 
impacté)

Le 
traitement 
surcompe

nse la 
perte de 

rendemen
t

Triticale (1)
Pois de 

printemps (3)

Aucun cas dans 
nos

modélisations

Le 
traitement 

n'a pas 
d'effet

Maïs grain (0)
Maïs ensilage 

(0)
Orge d’hiver 

(1)
Orge de 

printemps (1)
Blé tendre 
d’hiver (2)

Colza d’hiver 
(8)

Blé dur d’hiver 
(2)

Blé tendre 
d’hiver (2)

Colza d’hiver (8)
Tournesol (3)
Maïs grain (1)

Le 
traitement 
a un effet 
négatif sur 

le 
rendemen

t

Blé dur d’hiver 
(2)

Aucun cas dans 
nos

modélisations

Pression BA 
positive (le 
rendement 
augmente)

Le 
traitement 
augmente 
beaucoup 

le 
rendemen

t

Pomme de 
terre (2)

Aucun cas dans 
nos

modélisations
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Le 
traitement 
augmente 
légèremen

t le 
rendemen

t

Pois d’hiver (3) Pois d’hiver (3)

Le 
traitement 
diminue le 
rendemen

t

Aucun cas dans 
nos

modélisations

Aucun cas dans 
nos

modélisations

Discussions
L’une  des  difficultés  de  la  modélisation  est  sa  grande  amplitude 

d’utilisation : beaucoup de modèles de rendement se concentrent sur une 
culture en particulier (van Ittersum, 2012) et ne cherchent pas forcément 
à s’appliquer à toutes les grandes cultures, contrairement aux modèles du 
projet MoCoRiBA-GC. La précision de nos modèles est parfois sacrifiée au 
profit  de  leur  généricité  et  de  leur  capacité  à  traiter  des  cultures  très 
diverses :  ils  représentent  un  compromis  entre  robustesse,  précision, 
complexité et capacité à gérer les grands ensembles de données utilisés. 

Les résultats du modèle RF montrent une bonne précision pour la 
betterave et le maïs ensilage, mais des erreurs moyennes importants pour 
le maïs grain et le pois de printemps. Au niveau du R2, le blé tendre d’hiver 
et  le  maïs  grain  présentent  une  bonne  adéquation  du  modèle  aux 
données, mais celui-ci  échoue à expliquer la variance de la pomme de 
terre  et  du  pois  d’hiver.  Globalement,  la  performance  du  modèle  est 
équilibrée,  avec  un  R2 satisfaisant  mais  qui  appelle  à  davantage  de 
perfectionnement du modèle, dont les performances montrent une grande 
variabilité. 
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Tableau 4 : Résultats de la modélisation : impact des ravageurs et mitigation des traitements 
phytosanitaires. Le seuil d’acceptation a été fixé à 5%. 



Tous  les  résultats  des  graphes  d’importance  (Annexe)  sont  à 
discuter : le défaut du modèle RF c’est qu’il peut échouer à percevoir les 
interactions  entre  certaines  variables  (en  particulier  non  linéaires)  et 
donne ainsi une importance plus grande à une variable en interaction avec 
d’autres. 

Pour ce qui est du modèle Gamsel, les variations importantes des 
performances des modèles ainsi que les erreurs élevées montrent que le 
modèle pourrait être amélioré. A ce titre, il serait pertinent par exemple de 
prendre en compte les traitements phytosanitaires mensuels plutôt que 
leur moyenne annuelle, qui varie beaucoup. De même, cela permettrait de 
mieux cibler les traitements spécifiques à différents bioagresseurs. 

Pour les tableaux de résultats, le seuil d’acceptation des variations 
des courbes de rendement pour quantifier les impacts des bioagresseurs 
sur le rendement, et dans quelle mesure les traitements phytosanitaires 
sont efficaces (tableaux 2 et 3) a été fixé arbitrairement à 5%. Le choix de 
ce seuil est lié aux taux de diminutions de rendement jugés acceptables 
pour un exploitant. Nous l’avions dans un premier temps fixé à 3%, mais 
cela rendait les résultats moins apparents. 

Un certain nombre de résultats montrent des effets positifs sur le 
rendement en cas de traitement phytosanitaire : ceux-ci peuvent en partie 
être expliqués par un « effet vert » (F. Vancutsem, 2006) des traitements 
sur  les  cultures,  en particulier  pour  les  céréales.  L’absence d’effet  des 
traitements insecticides témoigne, dans une certaine mesure, des effets 
de résistance (Siddiqui JA, 2023) observés sur le terrain. Enfin, une partie 
de la variabilité des rendements n’est pas expliquée par le modèle : par 
exemple, un IFT fongicide très haut sur le colza peut être expliqué par le 
choix  des  exploitants  de  traiter  davantage  pour  des  questions 
d’assurance.  A  niveaux  d’herbicides  égaux,  un  travail  du  sol  plus 
important peut indiquer davantage de problèmes liés aux adventices ; ce 
que nos modèles peinent à prendre en compte. Il n’est enfin pas étonnant 
d’atteindre un certain plateau de rendement par rapport à la pression des 
bioagresseurs. L’un des problèmes de nos résultats est la difficulté à lier 
explicitement  l’importance  des  bioagresseurs  et  des  interactions  entre 
bioagresseurs et traitements phytosanitaires sur le rendement. 

Conclusion
L’étude  des  performances  de  nos  modèles  de  prédiction  des 

rendements agricoles en fonction de la pression des bioagresseurs et des 
effets des traitement phytosanitaires, appliqués aux 13 cultures sur des 
données issues du réseau DEPHY, a produit des résultats hétérogènes. Les 
modèles  montrent  une  variabilité  significative  dans  leur  capacité  de 
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prédiction,  influencée  par  la  grande  disparité  dans  la  disponibilité  des 
données.  En  particulier,  le  blé  tendre  d’hiver  se  distingue  par  une 
meilleure  qualité  de  prédiction.  Les  résultats  montrent  que  le  modèle 
fournit, malgré ses limites, des informations utiles. Il nécessite cependant 
des  ajustements,  notamment  en  affinant  l’analyse  de  l’apport  des 
traitements  phytosanitaires.  Ces  modèles  sont  un  travail  en  cours,  qui 
n’est pas achevé. 

Nos  résultats  mettent  tout  de  même  en  lumière  une  efficacité 
variable  des  traitements  phytosanitaires  pour  compenser  l’impact  des 
bioagresseurs  sur  les  rendements.  Certains  traitements  montrent  une 
bonne compensation et limitent les pertes, d’autres semblent au contraire 
être  inutiles  voire  les  aggraver,  ce  qui  révèle  des  problèmes  dans  la 
modélisation. Les modèles échouent cependant à capturer l’ensemble des 
effets des bioagresseurs et des traitements phytosanitaires, en partie en 
raison des limites inhérentes à la modélisation de rendements agricoles 
complexes  et  très  variés,  puisqu’appliqués  à  l’ensemble  des  grandes 
cultures. 

Des ajustements aux modèles sont nécessaires pour mieux prendre 
en compte les interactions complexes entre bioagresseurs et traitements, 
améliorer la précision des prédictions et mieux comprendre les facteurs de 
variations  des  rendements  afin  de  fournir  des  recommandations  plus 
fiables  pour  la  gestion  des  cultures.  Il  faudrait  peut-être  augmenter  la 
sophistication du modèle et intégrer davantage de données sur certaines 
cultures pour renforcer les capacités prédictives et la robustesse de ces 
modèles.  
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Annexe 1 : Répartition de la SAU en France en 2019 (source : Agreste, 
statistique agricole annuelle
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Annexe 2 : Superficies et évolutions des grandes cultures en France (données 
Agreste)
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Annexe 3 : Graphes d’importance des variables par culture (Modèle RF)
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Annexe 4 : Graphes d’évolution du rendement en fonction des bioagresseurs et 
des traitements phytosanitaires (Modèle Gamsel). 
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Annexe 5 : Exemple de graphes d’analyses d’une culture (ici blé tendre d’hiver) 
avec le modèle RF 
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