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Abstract

Understanding yield evolutions in crops, particularly the impact of
bio aggressors, is paramount for supporting farmers, researchers, and
policymakers. This is essential to anticipate the necessary changes to
maintain productivity while reducing the use of phytosanitary products, in
line with European objectives. This article presents a statistical model of
yields based on pests and diseases and the Treatment Frequency Index
(IFT) for herbicides, fungicides, and pesticides per plot, using data
collected over 20 years across France on thirteen different crops. The
combined use of a GAMSEL, Lasso and a Random Forest model, using R
helps to mitigate the weaknesses of each approach to capture the non-
linear effects of several variables on the target variable (yield), while
maintaining a good predictive accuracy and model robustness. Cross-
validation performed on multiple subsets (by year, by department or by
random sampling) ensures a better generalization. The aim of this kind of
model is to gquide agricultural practices. Meteorological, soil, and
epidemiological data account for most of the observed yield variations.
The discrepancies between the theoretical yields produced by the model
and the observed yields indicate areas for improvement to augment
relevance and avoid overfitting. These differences also highlight the
complexity of consistently measuring yields, given the many influencing
factors. Notably, the interactions between crops and pests, and the
resulting yield losses, are only partially captured by the model.

Résumé

Il est crucial de mieux comprendre I'évolution des rendements des
grandes cultures, en particulier I'impact des bioagresseurs, pour aider les
exploitants mais aussi les chercheurs et les décideurs a anticiper les
changements nécessaires pour maintenir la productivité en réduisant
I'utilisation de produits phytosanitaires selon les objectifs européens. Ici,
nous développons une modélisation statistique des rendements en
fonction des bioagresseurs et des indices de fréquence de traitement (IFT)
herbicides, fongicides et insecticides par parcelle a partir de données sur
les grandes cultures récoltées sur 13 ans et dans la France entiere sur 13
cultures. L'usage combiné dans R d'un modele GAMSEL, d’'un modeéle
Lasso et d’'un modele Random Forest permet de limiter les faiblesses
respectives de chaque approche en capturant les effets non linéaires de
variables explicatives sur la variable cible (le rendement), tout en gardant
une bonne précision de prédiction et une relative robustesse du modele.
La validation croisée, effectuée sur plusieurs sous-ensembles (par année,
par département ou échantillonnage aléatoire) garantit une meilleure
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généralisation. Ce type de modélisation peut permettre a terme d’orienter
les pratiques des exploitants. Les données météorologiques, pédologiques
et épidémiologiques expliquent la majeure partie des variations de
rendement observé. Les différences entre les rendements théoriques
produits par le modele et les rendements observés montrent que le
modele peut étre amélioré pour gagner en pertinence et éviter le
surajustement, et témoignent de la difficulté de mesurer de maniere
cohérente des rendements dont la variabilité dépend de tres nombreux
facteurs. En particulier, les interactions entre les cultures et les ravageurs,
ainsi que les pertes de rendement qu’ils causent, semble échapper en
partie a la modélisation.



Introduction

L'Institut National de Ila Recherche pour ['Agriculture,
I’Alimentation et I'Environnement (INRAE) est un institut public de
recherches. Issu de I'INRA (Institut National de Recherche Agronomique) et
de I'IRSTEA (Institut National de Recherche en Sciences et Technologies
pour I'Environnement et I’Agriculture), il se consacre a la recherche sur
I'agriculture durable, la sécurité et la qualité de I'alimentation, la
protection environnementale et I'impact du changement climatique. Il vise
a développer et améliorer les techniques d’agriculture en France pour
répondre aux défis de l'alimentation de demain, par exemple en
déterminant les évolutions de rendement des cultures face a un
changement des pratiques culturales.

En 2019, selon I'INSEE, la part des grandes cultures en France
correspondait a 48% de la Surface agricole utilisée (SAU), qui couvre 52%
de la métropole et 2% des DOM (Annexes 1 et 2). Cette répartition est
inéquitable : 94% de la SAU en lle-de-France est occupée par des grandes
cultures, contre 2% en Corse. L'agriculture joue un role important dans les
exportations francaises, lui assurant en 2019 une balance commerciale
agricole excédentaire de 7,8 milliards d’euros. Cependant, ce rendement
est soumis a des pressions grandissantes de bioagresseurs de plus en plus
résistants aux phytosanitaires, dont I'utilisation est de plus fréquemment
remise en cause en raison de leurs effets sur les sols, les eaux et la
biodiversité (V. Langlois, 2019). L'impact des bioagresseurs sur les
rendements reste difficile a évaluer (Devaud et Barbu, 2019) : la nocivité
et la pression qu'ils exercent peut varier rapidement selon les régions ou
les années, et I'augmentation des résistances complique la tache aux
exploitants. Il est en particulier difficile d’évaluer les pertes réelles de
rendements provoguées par des maladies et ravageurs en co-occurrence.

Le projet MoCoRiBA-GC (Modélisation et Communication du Risque
de BioAgresseurs en Grandes Cultures) est dirigé par I'INRAE depuis 2020
en lien avec différents partenaires (AWIUZ, Terres Inovia, ITB). Il visait
initialement a étudier les possibilités, avancées par différentes études
(Butault, 2010 ; Lechenet, 2017), de diminuer ['utilisation de produits
phytosanitaires de 10 a 30% sans perte de marge pour les agriculteurs en
enrichissant en temps réel I'information disponible pour les agriculteurs et
les conseillers. Dans ce but, des modeles statistiques ont été produits pour
mieux intégrer la pression des bioagresseurs sur le rendement dans le
cadre des pratiques des agriculteurs. A cause de la difficulté d’obtention
de données en temps réel, le projet s’est réorienté vers la production d'un
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outil qui permette une réflexion des exploitants sur leurs pratiques par
comparaison avec les exploitations du réseau DEPHY, engagé dans la
réduction de I'utilisation des produits phytosanitaires grace a des
nouvelles pratiques et techniques -culturales. Une version test de
I"application est en développement.

Mon stage s’inscrit dans le projet MoCoRiBA sur la thématique de
modélisation de I'impact des bioagresseurs sur le rendement en fonction
des traitements phytosanitaires. L'objectif est d’améliorer la quantification
de cet impact en appliquant dans R des modeles statistiques aux données
de I'’équipe. Dans un premier temps, il s’agit d’adapter et d’améliorer un
modele GAMSEL de rendement potentiel de 13 cultures parmi I'ensemble
des cultures sur lesquelles le jeu de données est suffisamment
conséquent. Par la suite, différents modeles (LASSO, Random Forest) sont
testés et adaptés pour améliorer leur pertinence et la qualité des
prédictions.

Données et méthode

Cette étude cherche a évaluer I'impact des bioagresseurs (maladies
et ravageurs) sur le rendement des grandes cultures, en utilisant la
modélisation statistique (foréts aléatoires, Lasso et Gamsel). Les données
des du réseau d’épidémiosurveillance utilisées pour les BSV (Bulletin de
Santé du Végeétal), associées aux données de rendement utilisés,
renforcent l'efficacité des modeles statistiques du fait de la taille de
I’échantillon et des grandes échelles spatiales sur lesquelles il est
distribué.

1. Bref état de I'art

La modélisation joue un réle majeur dans |'analyse et la conception
des systemes de culture (Gonzalez-Sanchez et al., 2014), en particulier
dans I'estimation des rendements, auxquels participent de tres nombreux
facteurs environnementaux (climat, sols), facteurs économiques (marchés
et filieres) et agronomiques (irrigation, traitement, rotation culturale,
travail du sol). Méme si des estimateurs simples, comme la moyenne des
rendements précédents, peuvent étre utilisés, la variation des rendements
n'est pas linéaire.

Les modeles mécanistes permettent de simuler directement le
mécanisme responsable de la relation entre deux variables : ils sont basés
sur la compréhension des interactions entre différentes parties d’'un
systeme, et sont construits sur des principes théoriques et des lois
physiques ou biologiques. lls permettent des prédictions détaillées et tres
précises. Si la plupart des modeles mécanistes de rendement sont
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spécifiques a une culture, certains modeles comme STICS (Brisson et al.,
1998) sont facilement adaptables grace a I'ajustement des parametres.
Cependant, ces modeles sont colteux et peu pratiques car gourmands en
temps de développement et de calcul, ce qui les rend peu applicables a la
planification agricole a grande échelle (Drummond et al., 2003).

En revanche, la modélisation basée sur l'analyse des données
permet de prédire ou de comprendre des relations entre variables, sans
forcément connaitre en profondeur les mécanismes sous-jacents. Cela leur
apporte une grande flexibilité malgré leur forte dépendance a la qualité
des données utilisées (Drummond et al., 2003). L'un des risques majeurs
associés a la modélisation statistique est le surajustement a des variables
non déterminantes qui se trouvent par accident corrélées dans la
prédiction a une caractéristique des données. La méthode de la validation
croisée (cross validation) permet de comparer les prédictions avec les
observations réalisées sur des données indépendantes, qui n'ont pas servi
lors de I'ajustement du modele. Si I'erreur observée est similaire a I'erreur
des données d’ajustement, alors le modele n'a pas réalisé de
surajustement. Le machine learning offre des outils puissants pour la
prédiction des rendements des cultures. Par exemple, parmi les modeéles
linéaires, un classifieur bayésien naif peut étre utilisé pour modéliser les
rendements en utilisant des prédicteurs continus et discrets tels que la
température, le CO2, le déficit de pression de vapeur et le rayonnement
solaire (Qaddoum, 2014). Cette méthode classe les données en supposant
les attributs indépendants les uns des autres.

Ont été utilisées également les méthodes de régression, telles que la
régression linéaire multiple, les arbres de régression M5-Prime, les MLP
(multilayer perceptron), qui utilisent plusieurs couches de neurones pour
apprendre des représentations complexes de données et modéliser les
relations non linéaires entre les variables d’entrée et les rendements, et la
régression par Support Vector (SVR), qui minimise les erreurs de prédiction
tout en maximisant la marge entre les données (Gonzalez Sanchez, 2014).

Les modeles random forest, ou « forét aléatoire », qui utilisent un
ensemble d’arbres de décision pour améliorer la précision et combinent les
résultats de plusieurs arbres, ont montré une grande précision (Priya,
2018), tandis que les SVM (support vector machine) ont également été
efficaces, surtout pour gérer des jeux de données complexes (Bondre,
2019).

Les modeles additifs généralisés (GAM), qui permettent de modéliser
les relations non linéaires entre des variables, combinés avec la régression
LASSO, permettent de sélectionner les variables les plus pertinentes en
simplifiant le modele (Devaud et Barbu, 2019).



Dans le cadre de la réduction de [I'utilisation des produits
phytosanitaires, des expérimentations sur les systemes de culture ont pu
étre menées pour mesurer la réduction du rendement atteignable. Selon
une étude menée en France sur 946 fermes par Lechenet (2017), on
pourrait réduire les herbicides de 37%, les fongicides de 47% et les
insecticides de 60% sans avoir d'effets négatifs sur la production ou les
revenus de I'exploitation, a condition d'adopter localement des itinéraires
techniqgues semblables pour plusieurs exploitations et de privilégier
I'utilisation de biopesticides, la rotation des cultures, et un travail du sol
pertinent.

2.Concepts

Le rendement potentiel (Yp) est le rendement d'une culture lorsque
les apports en eau et en nutriments sont non limitants et lorsque le stress
biotique est efficacement contr6lé ( (Evans, 1993). Lorsqu’elle est cultivée
dans ces conditions, la production et la croissance sont déterminées
uniquement par le rayonnement solaire, la température, le CO2
atmosphérique, l'interception de lumiere par la canopée et les traits
génétiques du cultivar. Le rendement potentiel, méme s'il est
théoriquement spécifique a un lieu précis (conditions climatiques et
environnementales), ne dépend pas des autres propriétés du sol. Pour des
cultures pluviales, on utilisera plutét le rendement limité par I'eau (Yw),
qui peut étre également utile pour des cultures irriguées, et qui dépend
aussi du type de sol (capacité de rétention d’eau, profondeur
d’enracinement) et de la topographie de la parcelle (ruissellement). On
calcule Yp et Yw pour des dates de semis recommandées, une densité de
semis et un cultivar donné.

Le rendement moyen atteint (Ya) est le rendement effectivement
obtenu au champ. Le contexte et les pratiques culturales sont des facteurs
majeurs de la croissance: le rendement doit étre maximisé pour
I'ensemble du systéme cultural et non simplement pour les bénéfices
d'une culture. Le Ya dépend effectivement des pratiques de gestion
majoritaires dans une région donnée (date de semis, cultivar, densité de
semis, gestion des nutriments, protection et traitement des cultures).



L'écart de rendement (Yg) est la différence entre le rendement
potentiel (Yp ou Yw) et le rendement réel (Ya). Il est impossible pour la
majorité des exploitants d’atteindre effectivement I’équilibre dans les
pratiques culturales nécessaire pour atteindre le rendement potentiel, et il
n'est pas généralement rentable de chercher a le faire a cause d’'un effet
plafond : la réponse du rendement aux intrants diminue lorsqu’on atteint
certains niveaux d'IFT, indice de fréquence de traitement (Koning et al.,
2008) ; I'efficacité de I'utilisation des ressources diminue également avec
les facteurs de rendement, comme les températures élevées, les
précipitations variables, les vents forts (risque de verse accru). Le
changement climatique (température et disponibilité en eau) affecte
directement et indirectement ces rendements par les adaptations qu’il

a
CO2 atmosphérique
A Rayonnement
— Température
Rendement potentiel (Yp) } défini par Cultivar
5 ~
= —
‘g Rendement limité par I'eau < limité par Eau
3 (Yw)
Qo
§ Rendement limité par I'eau limité par N tEau ¢
=] et les nutriments utriments
S .
2 ‘ — Adventices
Rendement atteint (Ya) réduit par Maladies
Ravageurs

Niveau de production

exige (date de semis, changements chez les ravageurs et maladies).

b

A

Déterminants : Ecart de

température, date rendement (Yg)
de semis, cultivar,
rayonnement, eau
disponible (pour 80% de Yp ou Ya
Yw)

Niveau de rendement

Rendement
potentiel (Yp
ou Yw)

Rendement Rendement
exploitable atteint (Ya)

Figure 1 : Niveaux de production selon leurs facteurs de définition, limitants ou de
réduction (a). Lécart de rendement (b) représente I’écart entre le rendement

atteint et 80% du rendement potentiel (source : adapté de van Ittersum et al., 0
2012).



3. Données

Les données utilisées au cours de cette étude proviennent de bases
de données nationales, telles que le réseau DEPHY, du réseau
d’épidémiosurveillance (Epiphyt et Vigicultures®), et de la base
météorologique SAFRAN. Les régions sélectionnées sont représentatives
des zones de culture majeures en France, permettant une bonne vue
d'ensemble des conditions agricoles et environnementales.

Plusieurs filtres ont été appliqués pour garantir la qualité du jeu de
données : les informations manquantes ont été supprimées, de méme que
les données incohérentes, comme un IFT fongicide supérieur a 30 ou des
rendements de blé tendre d’hiver supérieurs a 200 g.ha™.

A. Les données Agrosyst

Elaboré pour le réseau DEPHY par I'INRAE dans le cadre du plan
Ecophyto, le Systeme d’Information (SI) Agrosyst sert d’appui a la
description et a I’évaluation des systemes de culture (Ancelet et al., 2015),
en partenariat avec de nombreux partenaires et exploitants. L'un de ses
objectifs revendiqués est la diminution de [I'usage des produits
phytosanitaires.

Dans le cadre de la préparation des données pour le projet
MoCoRiBA-GC (Lay, 2020), sont notamment utilisées les données des
itinéraires techniques (par exemple d'IFT, Indice de Fréquence de
Traitement) des fermes du réseau DEPHY. Deux types d’informations ont
été rassemblées :

- Réalisé : décrit les itinéraires techniques sur chaque parcelle pour
chaque année de récolte (cultures, interventions, mesures et
observations)

- Synthétisé : décrit les itinéraires relatifs a plusieurs parcelles au
méme stade de la rotation (méme culture, méme précédent cultural,
méme place dans la rotation), agrégées en supprimant la dimension
spatiale de la parcelle. Il couvre une ou plusieurs années de récoltes.

Nous avons utilisé les données provenant de 13 cultures : betterave,
blé tendre d’hiver, blé dur d’hiver, colza d’hiver, mais ensilage, mais grain,
orge d’'hiver, orge de printemps, pois d’hiver, pois de printemps, pomme
de terre, tournesol et triticale. L’anonymisation a été faite préalablement a
notre réception des données, en supprimant les noms des agriculteurs,
des exploitations et des parcelles, mais le nom du département, de la
commune et le numéro de ferme DEPHY ont été conservés. Nous n’avons
acces qu’'au code INSEE des exploitations.
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Les données sur la réserve utile (RU) ont été obtenues en croisant les
données Agrosyst avec les données de Gis Sol et en faisant la moyenne
des données de chaque classe par commune.

B. Les données Safran

Le choix d’utiliser ces données climatiques de travaux antérieurs de
I’équipe (Chevaleyre, 2023). Les données climatiques Safran sont les
résultats d’'un modele mécaniste climatigue dans lequel ont été assimilées
les données d’observations collectées par Météo France depuis plusieurs
décennies. Ces données sont disponibles a la résolution spatiale de 8km
par 8km, et au pas de temps journalier. Ces données permettent ensuite
d’établir des modeles de bioagresseurs sur une base climatique précis
localement. Les variables extraites pour nos modeles (Lay, 2020)
concernent les températures minimales, moyennes et maximales pour
chaque année de récolte, I'évapotranspiration (ETP en mm), les
précipitations (mm), le rayonnement. A partir de ces données les
indicateurs suivants ont calculés : le nombre de jours de pluie, le nombre
de jours ou la température minimale était inférieure a -17°C, le nombre de
jours ou la température maximum était comprise entre 0 et 10°C, et le
nombre de jours ou la température maximale dépassait les 34°C. Chaque
parcelle Agrosyst est associée aux mailles Safran les plus proches grace
au code INSEE de I'exploitation.

C. Les données d’épidémiosurveillance

Les données d’observations concernant les bioagresseurs (maladies
et ravageurs) proviennent de la base de données Vigicultures®, qui
centralise des données publiques et privées. Vigicultures® est administré
par les structures représentatives de leurs cultures et filiere (Arvalis, Terres
Inovia, ITB, ASTREDHOR, IFV, CDAF, ACTA). Les données hebdomadaires
ont été moyennées a I'année pour chaque parcelle (Arvalis, 2020), et
traitées par interpolation et krigeage par des travaux antérieurs
(Chevaleyre, 2023).
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Culture

Type

Nom

Batterave

Maladie

Cercosporiose

Rouille

Rawageur

Puceron nair

Puceron vert

Orge d'hiver

Maladie

Helminthosporiose de l'orge

Oidium des céréales

Rhynchospaoriose

Rouille jaune de l'orge

Ravageur

Pucerons vecteurs de viroses

Pegomyie

Teigne de la betterave

Bl& dur d'hiver

Maladie

Fusariose

Helminthosporiose

Orge de printemps]

Maladie

Helminthosporiose de l'orge

Oidium des céréales

Rhynchospaoriose

Ravageur

Pucerons vecteurs de viroses

Oidium des céréales

Pigtin verze

Rouille brune du blé

Rouille jaune des céréales

Septoriose des céréales

Rawageur

Puceron

Pucerons vecteurs de viroses

Bl& tendre d'hiver

Maladie

Fusarioze

Puois d'hiver

Maladie

Anthracnose

Botrytis du pois

Mildiou du paois

Oidium du pois

Rouille du pois

Rawageur

Puceron vert du pois

Sitone du pois

Tordeuse du pois

Helminthosporiose

Oidium des céréales

Pigtin verze

Rouille brune du blé

Rouille jaune des céréales

Septoriose des céréales

Rawageur

Puceron

Pucerons vecteurs de viroses

Paois de printemps

Maladie

Anthracnose

Botrytis du pois

Mildiou du pais

Oidium du pois

Rouille du pois

Rawageur

Puceron vert du pois

Sitone du pois

Tordeuse du pais

Colza d'hiver

Maladie

Phoma

Sclérotiniose

Rawageur

Altize

Altise Grosse d'hiver du Colza

Maladie

Alternariose de la pomme de teme

Mildiou de la pomme de terre

Pomme de terre

Rawageur

Doryphores

Puceron

Altize petite des cruciféres

Charancon de la tige du chou

Charancon de la tige du colza

Charancon du bourgeon terminal

Meligéthe du colza

Maladie

Phoma macdonaldi {Maladie des taches noires)

Phomopsis du tournesol

Tournesol

Rawageur

Limace

Puceron noir de la féve

Puceron vert du prunier

Puceron vert du pEcher

Mais ensilage

Rawageur

Chrysoméle

Foreurs

Pyrales

Sesamies

Taupins

Maiz grain

Rawageur

Chrysoméle

Triticale

Maladie

Fusariose

Oidium des céréales

Pigtin verze

Rouille brune du blé

Rouille jaune des céréales

Septoriose des cérdales

Rawageur

Pucerons vecteurs de viroses

Foreurs

Pyrales

Sesamies

Taupins

Tableau 1 : Liste des ravageurs et maladies pris en compte dans les modéles pour
les 13 cultures identifiées.

4. Prédiction du rendement potentiel

Nous avons implémenté un modele de régression semi paramétrique
(permettant de capturer des relations non linéaires dans les données sans
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faire d’hypothése sur leur forme) en utilisant le modele additif généralisé
(GAM). La relation entre la variable dépendante et chacune des variables
explicatives est modélisée comme somme de fonctions lisses qui
représentent chacune une partie non paramétrique de la relation :

Y =80+ fi(Xh) + fa(Xo) + ...+ fo(Xp) + €

» [ est un paramétre intercept.
» f;(X;) sont des fonctions lisses (non paramétriques) des variables explicatives Xj.

e ¢ est I'erreur aléatoire.

Ici, on utilise des splines pour modéliser les effets non linéaires des
variables explicatives sur le rendement des cultures, en utilisant le
package de R ‘gamsel’. Pour chacune des 13 cultures d’intérét, apres avoir
supprimé les valeurs mangquantes, on extrait les variables climatiques et la
RU, variables explicatives, et le « rendZone », rendement réel a prédire.
Les données sont converties en matrices pour étre compatibles avec les
fonctions du package ‘gamsel’. Pour l'ajustement des parameétres du
modele, on a fixé les degrés de liberté a 3 pour chaque variable
explicative. Par validation croisée, on détermine le meilleur parametre de
régularisation (lambda.lse), qui garantit le meilleur équilibre entre le biais
et la variance du modele. Ce lambda contrble la complexité du modele
pour éviter le surajustement en réduisant la variance. Plus sa valeur est
élevée, plus le modele est lissé, au risque de perdre en pertinence. Le
lambda.lse est la valeur de lambda qui minimise |'erreur de validation
moyenne, soit le plus grand lambda qui produise un modele avec une
erreur de validation proche du meilleur modele, mais avec une meilleure
régularisation. L'usage de lambda.lse permet d’obtenir un modele plus
robuste aux variations des données d’entrainement, ce qui permet une
interprétation plus facile, quitte a sacrifier un petit peu de la performance
optimale.

Grace a la fonction « getActive » de ‘gamsel’, on sélectionne les
variables explicatives actives, en prenant en compte a la fois les effets
linéaires et non linéaires, puis les variables linéaires sont utilisées pour
formuler un Gam sous forme de spline. On fait ensuite la prédiction ajustée
aux données par culture.

L’évaluation des performances du modele est faite a partir de
I'erreur quadratigue moyenne (RMSE), l'erreur moyenne (ME) et les
coefficients de détermination (R?).
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5.L'impact des bioagresseurs sur le rendement

A. Le Modeéle Random Forest

Pour analyser l'impact des ravageurs sur le rendement et Ia
mitigation de cet impact par les traitements herbicides, fongicides et
insecticides, un gros ensemble de données a été traité grace au modele
Random Forest (RF), qui a permis d’en évaluer I'importance relative. Les
packages R ‘dplyr’ et ‘randomForest’ ont été utilisés. Le modele RF a été
choisi pour sa robustesse de prédiction et sa capacité a traiter de grands
ensembles de données en modélisant les relations complexes entre les
caractéristiques des cultures et de I'environnement d’'une part, et leur
rendement d’autre part. Plusieurs arbres de décision (500) ont été
combinés dans le modele RF pour améliorer la précision des prédictions et
réduire le surajustement. Chaque arbre est construit a partir d’'un sous-
ensemble aléatoire des données, et la prédiction finale repose sur
I’agrégation des résultats issus de tous les arbres. Chaque split prend en
compte un certain nombre de variables (par défaut, la racine carrée du
nombre total de variables) pour éviter le surajustement.

Les données ont été préparées en sélectionnant les variables
explicatives par la suppression de certains éléments du jeu de données
pour alléger le modele, comme les identifiants des parcelles. Elles ont
ensuite été divisées selon chaque culture, pour laguelle un modele
Random Forest est ajusté. Lors de la construction de chaque arbre du
modele, a chaque noeud de décision, on sélectionne aléatoirement un
certain nombre de caractéristiques parmi lesquelles on choisit le meilleur
attribut pour diviser les données. La prédiction finale est obtenue par
agrégation des prédictions et sélection de la classe majoritaire parmi tous
les arbres. Une validation croisée interne est réalisée avec les données
d’entrainement pour vérifier les performances du modele, puis 4
validations croisées différentes ont été effectuées: par année, par
département, par échantillonnage aléatoire et par année et département
combinés. A chaque fois, les données ont été divisées en un ensemble
d’entrainement, sur lequel ont été réalisées les prédictions, et un
ensemble de test, pour évaluer les performances du modele en termes de
RMSE (erreur quadratigue moyenne), erreur moyenne et R? Enfin, les
résultats de tous les groupes de test sont agrégés pour fournir une
évaluation globale de la performance du modele, en utilisant la RMSE,
I’erreur moyenne absolue, le pourcentage moyen d’erreur absolue et le R2.

Pour analyser les résultats du modele RF, on a extrait les 30
variables les plus influentes en se basant sur le pourcentage
d’augmentation du MSE et on a sélectionné leur importance (fonction
« importance » du package ‘randomForest’) dans la variabilité du modele,
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puis on a réalisé des graphiques pour visualiser cette importance et
faciliter I'interprétation pour chaque culture.

Pour analyser les interactions, on a d’abord étudié les interactions
dans le modele entre I'indice de fréquence de traitement (IFT) fongicide et
pesticide et les bioagresseurs correspondant a chaque type. Pour chaque
culture, on a ajusté les données en fonction des niveaux de pression des
maladies (de 0 a 1 par incrément de 0,2), puis on a prédit les rendements
en faisant varier les IFT. Des graphes lissés et des boxplots ont été réalisés
pour chague culture et niveau de pression des maladies et ravageurs.

B.Le modeéle Gamsel

Les données ont été traitées par un modele additif généralisé avec
sélection automatique des variables les plus pertinentes. Nous avons
ajouté aux données les interactions spécifiques a chaque culture entre les
bioagresseurs, classifiés en maladies et ravageurs, et les traitements
insecticides et fongicides pour étudier leur impact sur le rendement, en
multipliant les variables des bioagresseurs avec les variables de
traitement correspondantes, pour modéliser les effets combinés sur le
rendement. Le modele a tourné avec et sans normalisation des données
pour faciliter I'interprétation. Les colonnes ayant moins de trois valeurs
uniques ont été supprimées pour permettre un ajustement efficace du
modele.

L'analyse effectuée sur le modele Gamsel montre comment évoluent
les coefficients non nuls dans le modele, répartis en termes linéaires et
non linéaires. La qualité d’ajustement du modele est analysée grace au
pourcentage de déviance expliqué par le modele. Au fur et a mesure que
le lambda choisi pour la modélisation (parametre de régularisation) varie,
la complexité du modele augmente : les pourcentages de déviance
expligués sont croissants, ce qui indique une meilleure explication de la
variance du rendement (variable de réponse). Pour chaque culture, on a
déterminé la valeur optimale du parametre de régularisation « lambda »
grace a la validation croisée. Le lambda pour lequel les erreurs de
validation croisée cessent de diminuer de maniere monotone a été
identifié, avec une marge d’un écart-type au-dessus de I'erreur minimale
monotone.

La validation croisée est appliguée au modele sur les mémes criteres
de sélection que pour le modele RF (par année, par département, par
échantillonnage aléatoire et en combinant années et départements).

Les performances du modele ont été évaluées grace a la RMSE, pour
mesurer |'erreur quadratique moyenne entre les valeurs prédites et les
valeurs observées, grace a |’erreur moyenne, et par R2.
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Par évaluation croisée des effets des bioagresseurs par culture, en
tenant compte des variations de rendement selon les traitements, on a
déterminé si |'effet des bioagresseurs sur le rendement était croissant,
décroissant ou stable en évaluant les pentes: plus la pression des
bioagresseurs est forte, plus le rendement diminue, et inversement. Cette
analyse a permis de distinguer les cas de surcompensation du modele,
d’inefficacité du traitement, ou de I'absence d’effet. Enfin, par analyse
statistique, on a évalué la significativité des résultats du modele par
rapport au hasard.

C.Le modele GLM Lasso

Le méme ensemble de données a enfin été traité par régression
avec un modele GLM LASSO (Least Absolute Shrinkage and Selection
Operator), utilisé pour la sélection de variables en grand nombre. Il ajoute
une pénalité a la somme des valeurs absolues des coefficients des
variables explicatives, selon un parametre de contréle lambda. La fonction

Minimiser (RSS A E?_l |5;|)

.

ou:
* RSS (Residual Sum of Squares) est la somme des carrés des résidus (erreurs) du modele.
* A estle parametre de réqularisation, contrélant la force de la pénalité.

» B_j represente les coefficients des variables explicatives.

de codt pour le Lasso est la suivante :

Le Lasso permet a certains coefficients de devenir exactement nuls,
donc de sélectionner automatiqguement les variables pertinentes pour le
modele. Cela permet de limiter I'overfitting, encore trop présent dans le
Random Forest, et améliore la généralisation du modele. Apres avoir
importé les données pertinentes, en supprimant certaines colonnes,
comme les identifiants des parcelles, on a ajouté au modele de rendement
les interactions entre bioagresseurs (maladies et ravageurs) et les IFT
correspondantes  (pesticides et fongicides). Les variables des
bioagresseurs ont été forcée négativement : I'activité des bioagresseurs
sur une parcelle ne peut pas améliorer son rendement. Le modele a tourné
avec et sans l'inclusion du rendement potentiel (PredGamSel) obtenu
précédemment avec le modele de rendement, pour évaluer la validité des
performances du modele et obtenir une meilleure estimation des relations
entre variables explicatives et rendement, et éviter le surajustement en
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améliorant la généralisation. Les données ont été normalisées et
standardisées pour faciliter I'analyse et l'interprétation, puis le modele a
été ajusté avec le package R ‘glmnet’. Par validation croisée interne
(fonction « cv.glmnet »), le meilleur parameétre de régularisation lambda a
été choisi. Les résultats du modele incluent les coefficients, les prédictions
et le meilleur lambda pour chaque culture. La robustesse du modele a
ensuite été testée par validation croisée. La validation croisée est utilisée
encore une fois par année, par département, par échantillonnage aléatoire
et par année et département combinés.

Pour analyser les interactions spécifigues a chaque culture, une
colonne d’interaction a été ajoutée en multipliant les variables de
maladies et les fongicides et les ravageurs et insecticides.

Résultats

Les différentes modélisations menées sur les 13 cultures du jeu de
données ont permis d’établir quelques résultats quant a l'impact des
bioagresseurs sur le rendement et a la réduction de cet impact par les
traitements pesticides et fongicides. Le jeu de données utilisé s’est révélé
inégal selon les cultures, étant proportionnel aux surfaces nationales de
chacune de ces cultures, ce qui a impacté la capacité du modele a
produire des résultats fiables. Ainsi, les données pour le blé tendre d’hiver
sont les plus abondantes (Tableau 2).

Betterave 2432

Blé dur d'hiver | 1376
Blé tendre

d'hiver 28914

Colza d'hiver 7565
Mais ensilage 7606

Mais grain 8388
Orge d'hiver 7388

Orge de
printemps 3370
Pois d'hiver 582
P_0|s de 1702
printemps

Pomme de terre | 1478
Tableau 2 : Visualisatign dellaWiaRMé de pointsSde données pour

Triticale 1755 |
global des

Fonctionnement
modeles

Les différentes modélisations réalisées visaient a mieux connaitre
I'impact des bioagresseurs sur le rendement, et dans quelle mesure les
traitements phytosanitaires permettent de réduire cet impact. Les
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données traitées, issues du réseau DEPHY, refletent déja une utilisation
optimisée des traitements phytosanitaires : dans la majeure partie des
cas, les rendements modélisés ne témoignent pas d'un usage trop intensif
de ces traitements.

Le Modele Random Forest a livré des performances variables selon
les cultures, ce qui s’explique en partie par les disparités dans le nombre

de points de données. Ses performances globales sont les suivantes :

1. Performance par Culture

Mean R-
Crop Yield RMSE RRMSE squared
0.166575 {0.226080
Betterave 13.72145 |2.285658 |5 9
Blé dur 0.275501 {0.431800
d'hiver 52.57088 |14.48337 |8 6
Blé tendre 0.208234 [ 0.529511
d'hiver 69.42566 [ 14.45683 |7 8
0.247000 [ 0.389411
Colza d'hiver |31.26417 |7.72228 |9 2
0.225657
Mais ensilage | 13.2282 |2.985043 |6 0.371006
0.225980 [ 0.546425
Mais grain 92.45134 {20.89219 |4 8
0.432709
Orge d'hiver [62.40712 |12.56411 [0.201325 |4
Orge de 0.233224 [ 0.463181
printemps 55.74812 |13.00184 |6 5
0.407022 [0.354647
Pois d'hiver [31.0467 |12.6367 |4 6
Pois de 0.349108 {0.358242
printemps 33.58583 |11.7251 |6 2
Pomme de 0.190640 (0.145124
terre 45.26446 | 8.629249 |7 4
0.274131 (0.418914
Tournesol 22.522 6.173994 |8 5
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0.474724
Triticale 52.12668 |12.42789 [0.238417 |7

2. Performance Globale des Modeles
- Modele Moyen Toutes Années Confondues
o RMSE: 16.82524
o RRMSE: 0.3227761
o R?:0.5000489
- Modele Moyen Par Année
o RMSE moyen : 14.79302
o RRMSE moyen: 0.2878096

La RMSE permet d’évaluer les biais systématiques : le choix de ce
parametre permet une bonne évaluation globale du modele. Ici, elle n’est
pas normalisée : elle est a rapporter aux valeurs de rendement de chaque
culture. La RRMSE permet de normaliser la RMSE en fonction du
rendement moyen.

Les résultats des modeles révelent des différences significatives en
termes de précision de prédiction entre les différentes cultures. Le blé
tendre d’hiver et le mais grain ont un R? assez élevé, ce qui indiqgue une
bonne explication par le modele de la variabilité des rendements, et une
RRMSE relativement basse, ce qui indigue une précision assez bonne des
prédictions. En revanche, certaines cultures comme la pomme de terre
sont moins performantes, avec un R? inférieur a 0,2. Les RRMSE les plus
élevées, pour le pois d'hiver et le pois de printemps, montrent
d’'importantes erreurs de prédictions. Globalement, avec un R? de 0,5, le
modele a une bonne performance pour expliquer la variabilité des
rendements. Cependant, la RRMSE moyenne est plus faible pour le modele
moyen par année, ce qui suggere que les modeles s’ajustent mieux aux
variations spécifiques d’année en année, montrant lI'importance des
facteurs annuels dans la précision des prédictions.

Le modele Gamsel a également livré des performances variables :

1. Performances par culture :

Rdt

Culture R? RMSE moyen RRMSE
Betterave 0.4379 16.1546 [81.9791 |[0.1971
Blé dur

d'hiver 0.3775 15.4332 |53.0875 [0.2907
Blé tendre

d'hiver 0.3421 17.9423 |69.4382 |0.2584
Colza d'hiver |0.3351 7.8233 32.3782 [0.2416
Mais ensilage | 0.1898 4.1576 13.1643 |0.3158
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Mais grain 0.3345 25.9026 |91.6950 [0.2825

Orge d'hiver [0.2652 15.5860 [62.2750 |0.2503

Orge de
printemps 0.3006 15.6773 |55.8673 |0.2806

Pois d'hiver |0.3652 12.6703 [29.0122 [0.4367

Pois de

printemps 0.2945 12.6282 |33.8029 |0.3736
Pomme de

terre 0.4182 9.4882 43.1769 [0.2198
Tournesol 0.2157 7.4913 22.5479 |0.3322
Triticale 0.3234 14.6341 |50.7399 |0.2884

2. Performances globales :
- R2?: 0.3748
- RRMSE: 0,2639

Les résultats révelent des variations significatives de performances
du modele: il est plus efficace pour expliquer les variations de
rendements pour la betterave ou le blé tendre d’hiver que pour le mais
ensilage. Des valeurs basses de RRMSE indiquent une meilleure précision
des prédictions par rapport aux rendements attendus, tandis que des
valeurs élevées, comme pour le pois de printemps, suggerent des erreurs
de prédictions plus grandes par rapport aux rendements moyens.
Globalement, avec un R? de 0,37, le modéle a une performance correcte
mais pas excellente, et une erreur relative modérée par rapport aux
rendements moyens.

Les graphes d’'importance des variables dans [I'élaboration du
rendement ont été établis pour le modele RF (Annexe). lls sont
relativement consistants avec la littérature en ce qui concerne le
rendement des grandes cultures. Ainsi, pour le blé tendre d’hiver par
exemple, les variables les dont I'importance est la plus élevée sont, outre
le rendement potentiel prédit par notre modele et le rendement standard
fourni par DEPHY, la fertilisation minérale en azote, I'IFT fongicide, le
travail du sol avant semis, I'lIFT herbicide et la date de semis. Viennent
ensuite les premiers bioagresseurs et les variations climatiques.

Maladies

L'un des buts de ce stage était de quantifier les impacts sur le
rendement des maladies, et la facon dont les traitements phytosanitaires
peuvent mitiger cet impact, en utilisant les données d’'un réseau
d’exploitation qui vise a en réduire I'usage. Dans le cas des maladies, nous
avons pu constater au cours des différentes modélisations que les modeles
rendent bien compte d’'un impact sur le rendement. La culture pour
laguelle les modeles ont le mieux fonctionné est le blé tendre d’hiver, en
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raison du grand nombre de points de données qui ont permis une bonne
prédiction.

D’apres le modele Gamsel, pour les cultures de blé tendre d’hiver,
de pois d’hiver et de triticale, le modele montre que le traitement
compense la perte de rendement occasionnée par les maladies (Tableau
3). Pour le colza d’hiver et I'orge de printemps, cette compensation n’est
que partielle. Pour le tournesol, le traitement ne compense pas la perte de
rendement liée aux maladies. Le modele RF (Annexe 5) donne des
résultats un peu différents : blé tendre d’hiver, colza d’hiver et pois d’hiver
semblent montrer une bonne compensation de I'impact des maladies par
les traitements phytosanitaires, tandis que pois de printemps, tournesol et
triticale montrent une compensation partielle (Annexe 4).

Dans le tableau suivant, nous avons rassemblé les résultats donnés
par le modele RF et le modele Gamsel pour les maladies, selon les criteres
que Vvoici :

- Pression BA négative : les bioagresseurs exercent une pression
négative sur les rendements, qui diminuent

- Pression BA neutre : les bioagresseurs n’exercent pas de pression
significative sur le rendement d'apres nos modélisations, ce qui peut
révéler un probleme dans le modele

- Pression BA positive: les bioagresseurs exercent une pression
positive sur le rendement, qui augmente : c’'est tres probablement
un probléme dans notre modele

Cultures
. . correspondan Cultures
Impact Impact Representation tes d'apres le correspondant
des des schématique des modpéle es d'apres le
Bioagress | traiteme évolutions de modele RF
GAMSEL
eurs (BA) | nts (IFT) rendement (nombre de
(nombre de .
. maladies)
maladies)
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Pression
BA
négative
(le
rendement
diminue)

Le

—— rendement sans traitement

— rendement avec traitement

traitement Blé tendre S,Iﬁi\tleerr]%e)
compense d'hiver (7) Colza d’hiver (2)
la perte de Pois d'hiver (5) Pois de
rendemen Triticale (6) .
t % printemps (4)
— rendement sans (railement
Le = rendement avec traitement
traitement
compense Colza d'hiver C L
. Pois d’hiver (5)
partiellem (2) Tournesol (2)
ent la Orge de Triticale (6)
perte de printemps (3)
rendemen ’\
t
— rendement sans traitement
Le = rendement avec traitement
traitement
Comneense Aucun cas dans
paz I3 Tournesol (2) nos
perte de modélisations
rendemen
t %
— rendement sans traitement
= rendement avec traitement
Le
traltement Aucun cas dans| Aucun cas dans
aggrave la
perte de d'T'OS , dlr|1_os .
rendemen modélisations modélisations
t

~
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—— rendement sans traitement
= rendement avec traitement
. Le Orge d'hiver
traitement (4)
surcompe \
nse la | prinptzlrsngs (5) Orge d’'hiver (4)
perte de
rendemen Pomme de
t ’ terre (2)
—— rendement sans traitement
— rendement avec traitement
Pression
BA neutre Le Betterave (2) BeFterav_e (2)
(le traitement Mais ensilage IV!.als grain (0)
rendement | n'a pas (0) Mais ensilage (0)
n'est pas d'effet Mais grain (0)
impacté)
—— rendement sans traitement
Le —— rendement avec traitement
traitement
a un effet Aucun cas dans| Aucun cas dans
négatif sur nos nos
le modélisations modélisations
rendemen
t ‘\
— rendement sans traitement
. i Le = rendement avec traitement
BA positive | augmente | Blédurdhiver
Blé dur d'hiver (7)
(le beaucoup
(7) Orge de
rendement le int (3)
augmente) | rendemen printemps
t




Le

= rendement sans traitement

— rendement avec traitement

traitement
augmente Aucun cas dans
1ug Pomme de terre
légeremen nos (2)
tle modélisations
rendemen
t
—— rendement sans traitement
= rendement avec traitement
Le
traitement Aucun cas dans| Aucun cas dans
diminue le nos nos
rendemen modélisations modélisations
t

K

Tableau 3 : Résultats de la modélisation : impact des maladies et mitigation des traitements

phytosanitaires. Le seuil d’acceptation a été fixé a 5%.

Ravageurs

Les modeles utilisés ont été moins bons pour prédire comment les
ravageurs affectent les rendements et quel est I'impact des traitements
phytosanitaires sur ce dernier en utilisant les données DEPHY. Ainsi,
aucune des cultures ne montre a la fois un impact négatif des ravageurs
sur le rendement et une compensation de cet impact par les traitements
insecticides pour le modele Gamsel (Annexe 4). Pour le modele RF (Annexe
5), seuls l'orge de printemps, l'orge d’hiver et le pois de printemps
montrent, assez faiblement, une pression des ravageurs sur le rendement.

Impact Impact Représentation Cultures Cultures
des des schématique des | correspondan | correspondant
Bioagress | traiteme évolutions de tes d'apres le | es d'apres le
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modele

modele RF
GAMSEL
eurs (BA) | nts (IFT) rendement (nombre de (nombre de
ravageurs
ravageurs) 9 )
—— rendement sans traitement
= rendement avec traitement
Le
traitement
compense Aucun cas dans| Aucun cas dans
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Tableau 4 : Résultats de la modélisation : impact des ravageurs et mitigation des traitements
phytosanitaires. Le seuil d’acceptation a été fixé a 5%.

Discussions

L'une des difficultés de la modélisation est sa grande amplitude
d’utilisation : beaucoup de modeles de rendement se concentrent sur une
culture en particulier (van Ittersum, 2012) et ne cherchent pas forcément
a s’appliguer a toutes les grandes cultures, contrairement aux modeles du
projet MoCoRiBA-GC. La précision de nos modeles est parfois sacrifiée au
profit de leur généricité et de leur capacité a traiter des cultures tres
diverses : ils représentent un compromis entre robustesse, précision,
complexité et capacité a gérer les grands ensembles de données utilisés.

Les résultats du modele RF montrent une bonne précision pour la
betterave et le mais ensilage, mais des erreurs moyennes importants pour
le mais grain et le pois de printemps. Au niveau du R?, le blé tendre d’'hiver
et le mais grain présentent une bonne adéquation du modeéle aux
données, mais celui-ci échoue a expliquer la variance de la pomme de
terre et du pois d’hiver. Globalement, la performance du modele est
équilibrée, avec un R? satisfaisant mais qui appelle a davantage de
perfectionnement du modele, dont les performances montrent une grande
variabilité.
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Tous les résultats des graphes d’'importance (Annexe) sont a
discuter : le défaut du modele RF c’est qu’il peut échouer a percevoir les
interactions entre certaines variables (en particulier non linéaires) et
donne ainsi une importance plus grande a une variable en interaction avec
d’autres.

Pour ce qui est du modele Gamsel, les variations importantes des
performances des modeles ainsi que les erreurs élevées montrent que le
modele pourrait étre amélioré. A ce titre, il serait pertinent par exemple de
prendre en compte les traitements phytosanitaires mensuels plutdét que
leur moyenne annuelle, qui varie beaucoup. De méme, cela permettrait de
mieux cibler les traitements spécifiques a différents bioagresseurs.

Pour les tableaux de résultats, le seuil d’acceptation des variations
des courbes de rendement pour quantifier les impacts des bioagresseurs
sur le rendement, et dans quelle mesure les traitements phytosanitaires
sont efficaces (tableaux 2 et 3) a été fixé arbitrairement a 5%. Le choix de
ce seuil est lié aux taux de diminutions de rendement jugés acceptables
pour un exploitant. Nous I’'avions dans un premier temps fixé a 3%, mais
cela rendait les résultats moins apparents.

Un certain nombre de résultats montrent des effets positifs sur le
rendement en cas de traitement phytosanitaire : ceux-ci peuvent en partie
étre expliqués par un « effet vert » (F. Vancutsem, 2006) des traitements
sur les cultures, en particulier pour les céréales. L'absence d’effet des
traitements insecticides témoigne, dans une certaine mesure, des effets
de résistance (Siddiqui JA, 2023) observés sur le terrain. Enfin, une partie
de la variabilité des rendements n’est pas expliquée par le modele : par
exemple, un IFT fongicide tres haut sur le colza peut étre expliqué par le
choix des exploitants de traiter davantage pour des questions
d’assurance. A niveaux d’herbicides égaux, un travail du sol plus
important peut indiquer davantage de problemes liés aux adventices ; ce
gue nos modeles peinent a prendre en compte. Il n’est enfin pas étonnant
d’atteindre un certain plateau de rendement par rapport a la pression des
bioagresseurs. L'un des problemes de nos résultats est la difficulté a lier
explicitement I'importance des bioagresseurs et des interactions entre
bioagresseurs et traitements phytosanitaires sur le rendement.

Conclusion

L'étude des performances de nos modeles de prédiction des
rendements agricoles en fonction de la pression des bioagresseurs et des
effets des traitement phytosanitaires, appliqués aux 13 cultures sur des
données issues du réseau DEPHY, a produit des résultats hétérogenes. Les
modeles montrent une variabilité significative dans leur capacité de
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prédiction, influencée par la grande disparité dans la disponibilité des
données. En particulier, le blé tendre d’hiver se distingue par une
meilleure qualité de prédiction. Les résultats montrent que le modele
fournit, malgré ses limites, des informations utiles. Il nécessite cependant
des ajustements, notamment en affinant |'analyse de |'apport des
traitements phytosanitaires. Ces modeles sont un travail en cours, qui
n'est pas achevé.

Nos résultats mettent tout de méme en lumiere une efficacité
variable des traitements phytosanitaires pour compenser l'impact des
bioagresseurs sur les rendements. Certains traitements montrent une
bonne compensation et limitent les pertes, d’autres semblent au contraire
étre inutiles voire les aggraver, ce qui révele des problemes dans la
modélisation. Les modeles échouent cependant a capturer I'ensemble des
effets des bioagresseurs et des traitements phytosanitaires, en partie en
raison des limites inhérentes a la modélisation de rendements agricoles
complexes et tres variés, puisqu’appligués a l'ensemble des grandes
cultures.

Des ajustements aux modeles sont nécessaires pour mieux prendre
en compte les interactions complexes entre bioagresseurs et traitements,
améliorer la précision des prédictions et mieux comprendre les facteurs de
variations des rendements afin de fournir des recommandations plus
fiables pour la gestion des cultures. Il faudrait peut-étre augmenter la
sophistication du modele et intégrer davantage de données sur certaines
cultures pour renforcer les capacités prédictives et la robustesse de ces
modeles.
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Annexe 1 : Répartition de la SAU en France en 2019 (source : Agreste,
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Unités : 1 000 ha, %. 2016 2017 2018 2019 2020 MOY. 2021 2021 2021
(1) (1) (1) (1) (2) 16-20 (3) /2020 MOY. 16-20
CEREALES (a) 9 525 9 339 9 055 9 393 8 909 9 244 9191 +3,2 - 0.6
Blé tendre 5132 4 952 4 880 4999 4 262 4 847 4 891 + 148 +0,9
hiver 5120 49438 4 866 49353 4222 4 828 4873 +154 +09
printemps 12 14 14 16 40 19 18 — 56,2 - 3.0
Blé dur 394 370 354 246 252 323 267 +6,1 -17.3
hiver 386 361 347 239 219 310 249 + 141 -19,6
printemps g 9 7 7 33 13 18 — 46,8 + 39,5
Orge, escourgeon 1917 1905 1768 1944 1972 1901 1796 -89 -55
hiver 1 506 1398 1284 1305 1177 1334 1203 +2.2 -9.38
printemps 411 507 454 639 795 567 583 - 254 + 4.6
Avoine 85 113 92 87 100 96 99 -0.4 = 4.0
hiver 51 7 59 49 42 54 50 + 20,0 -7.6
printemps 35 42 32 38 58 41 49 - 15,1 + 19,3
Seigle 25 24 24 29 32 27 32 +0,3 + 19,0
Triticale 331 305 254 305 261 297 305 + 17 .1 + 28
Autres (pures et mélanges) 120 153 153 180 208 163 172 —17.4 +5 8
Riz 15 15 12 14 14 14 13 -8.2 -9.2
Ceéréales a paille 8 019 7 847 7 567 7804 7100 7 668 7576 + 6,7 -1,2
Mais (b) 1458 1438 1426 1506 1692 1503 1521 -10.1 +1,2
grain (b) 1382 1376 1 365 1436 1609 1436 1442 -10,4 +04
Semences 66 60 61 70 82 58 &0 -3.2 + 17,4
Sorgho grain 48 56 61 83 117 73 94 -19.7 +285
OLEAGINEUX (a) 2 262 2 169 2 357 1907 2121 2163 1 868 - 11,9 — 13,6
Colza 1549 1401 1617 1107 1114 1358 9359 -11,2 -271
hiver 1548 1399 1615 1105 1112 1356 957 -11,2 - 272
printemps 1 2 2 2 3 2 2 — 142 +7.9
Tournesol 542 586 552 604 778 612 B66 — 14 4 + 87
Soja 137 142 154 164 187 157 172 - 8.1 + 0.6
Autres pléagineux 34 39 35 32 42 36 42 +0.3 + 15,7
PROTEAGINEUX (a) 301 299 227 2432 312 276 319 +272 + 15,5
Féveroles (et feves) 78 77 57 63 7 70 78 +14 +10,3
Puois protéagineux 216 218 167 176 230 201 235 +25 +17,2
Pois protéagineux purs 20
Mélange de pois a5
Lupin doux 8 5 3 3 G 5 G + 0,7 + 19,4
BETTERAVES |(c} 405 486 486 447 421 449 396 -58 - 11,8
POMMES DE TERRE (d) 172 185 191 198
Plants 19 21 22 23
Féculerie 23 23 24 22 23 23 23 -09 -03
Conservation et demi-saison 130 141 145 153 159 146 152 - 42 + 47
MAIS FOURRAGE 1433 1 406 1416 1436 1419 1432 1317 -7.2 -7.4

Source : AGRESTE

(1) Statistigue Agricole Annuelle - Agreste

(2) Statistigue Agricole Annuelle Provisoire 2020 - Agreste

(3) Statistigue Mensuelle au 1er mai 2021 - Agreste

(a) ¥ compriz semences

(e) Mon compris semences
(d} Dessus de plants inclus dans la production, non compris dans les

surfaces et rendements

{b) ¥ compris mais grain humide

données non disponibles

Wariations
posifives

Annexe 2 : Superficies et évolutions des grandes cultures en France (données
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Annexe 4 : Graphes d’évolution du rendement en fonction des bioagresseurs et

des traitements phytosanitaires (Modéele Gamsel).
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Annexe 5 : Exemple de graphes d’analyses d’une culture (ici blé tendre d’hiver)
avec le modele RF
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